Существует бесчисленное множество топологических семейств, некоторые реализованы в форме молекул – например, тело произвольной формы внутри полой сферы. Подобные структуры получены, их называют «птичками в клетке». Кроме того, была синтезирована скрученная лента, имеющая одностороннюю поверхность, – лента Мёбиуса, и ее также синтезировал Саваж.
Вернемся к катенанам. Две структуры, показанные на рис. 3.9, по мнению любого химика, представляют собой абсолютно разные соединения, но, с точки зрения "катенанщиков", это всего лишь два решения одной задачи – синтеза двойного катенана. Первым такую задачу решил Саваж.
От химии к механике
Метод синтеза катенанов, предложенный Саважем, другие исследователи начали применять для получения разнообразных конструкций со всевозможными переплетениями. Все же оставалось неясным, существуют ли у этих молекул какие-то достоинства. Саваж сумел найти ответ. Ранее было сказано, что циклы в катенане свободно перемещаются относительно друг друга. А можно ли управлять процессом? Для этого был синтезирован «специальный» катенан из двух различных циклов. Первый цикл (рис. 3.14а) представляет собой замещенный фенантролин с замыкающей цепочкой из фрагментов – (СН2)2-О-. Второй цикл отличается от первого тем, что, помимо замещенного фенантролина, он включает цепочку, содержащую три бензольных ядра с атомами азота (на рис. 3.14б).
По общей схеме был получен катенан, содержащий оба указанных цикла. Координирующий центр – вновь катион Сu+. Молекула «собралась» таким образом, что катион Сu+ оказался координационно связанным с двумя фрагментами фенантролина, присутствующими в обоих циклах (рис. 3.15, слева). Это было ожидаемо и многократно отмечено – катион Сu+ предпочитает именно такой лиганд. Затем катион Сu+ электрохимически окислили, то есть забрали у него один электрон, и он стал катионом Сu2+. Предполагалось, что катион Сu2+ иначе организует свое координационное окружение, что и подтвердилось. В результате цикл с утолщенными связями повернулся внутри всей конструкции и предоставил катиону Сu2+ три атома азота вместо двух (3.15, справа). При электрохимическом восстановлении (переход от Сu2+ к Сu+) все возвращается в исходное состояние.
Скромный на первый взгляд опыт показал химикам нечто важное – катенаном можно манипулировать, не затрагивая химические связи и лишь изменяя взаиморасположение колец. Получается, что это типичное механическое устройство.
Далее Саваж решил, что полученный результат можно использовать не только для поворота цикла, но и для его поступательного движения. Он синтезировал двойной ротаксан, в котором ось, проходящая через один цикл, присоединена к другому циклу (рис. 3.16). Строительный материал тот же, что в предыдущем синтезе, – фенантролин, фрагменты с двумя азотами, терпиридиновые фрагменты с тремя азотами и ветви – (СН2)2-О-. Оба цикла содержали фенантролин, а в структуре осей присутствовали и фенантролин, и фрагмент с тремя атомами N. Синтез с «главным организатором» – Cu+ – позволил получить двойной ротаксан, в котором ионы меди практически окружили себя только молекулами фенантролина. Далее следовал вполне естественный расчет: если окислить ионы меди до Cu2+, то они передвинутся по оси в поисках фрагмента с тремя атомами N, по аналогии с предыдущим синтезом. Этот процесс оказался возможным, но протекал очень медленно. Однако когда ионы меди заменили ионами цинка, перемещение произошло сразу же, и цинк передвинул кольцо таким образом, что теперь его окружали пять атомов N – два от фенантролина и три от второго фрагмента (рис. 3.16).
Саваж назвал полученное соединение молекулярным мускулом (molecular muscle), поскольку все это напоминало работу мышц при их растяжении и сжатии.
Продолжение эстафеты
Многие исследователи приступили к поискам различных способов управления катенаноподобными структурами. Наиболее эффектные результаты получил шотландский ученый-химик Дж. Ф. Стоддарт. Однако это случилось не сразу – какое-то время ушло на совершенствование мастерства. Точно такое же происходит при обучении музыкантов-композиторов: есть этап, когда они осваивают исполнительский навык. Включившись в поток катенановых исследований и используя методику Саважа, Стоддарт получил катенан с двумя кольцами, дополнительно соединенными перемычкой, и назвал его кренделем (pretzelane) – естественно, упомянув название в заголовке статьи. Затем всего в две стадии (!) он синтезировал удивительную молекулу «кольца Борромео», воспроизводящую старинный символ, изображенный на гербе аристократического семейства Борромео из г. Милана. Особенность такого способа сплетения колец состоит в том, что при удалении любого из колец два других полностью разъединяются. Здесь отсутствует вариант, когда одно кольцо продето в другое. Молекулы «крендель» (рис. 3.17а) и «кольца Борромео» (рис. 3.17б) показаны в упрощенном виде, без структурных формул.
В определенный момент Стоддарт изменил методику и состав исходных соединений. Он использовал два типа колец: один цикл собран из трех бензольных ядер, соединенных звеньями – (СН2)2-О-, другой содержит четыре катионных атома N+ (рис. 3.18). Напомним, что в химической среде катион всегда присутствует вместе с анионом. В данном случае у каждого атома азота имеется противоанион PF6-, однако эти анионы не участвуют в построении катенана, а располагаются в стороне от «строительной площадки». В структуре исходного и полученного соединений они не показаны.
На основе этих циклов Стоддарт синтезирован катенан, содержащий пять последовательно сплетенных циклов (рис. 3.19). Он получил название "олимпиадан" (olympiadane), поскольку топологически воспроизводил пять олимпийских колец и был синтезирован в 1994 г.
Постепенно все эти увлекательные эксперименты с переплетением циклов обрели новый смысл. Стоддарт стал искать способы управления перемещением колец. На этом этапе пригодился цикл с четырьмя атомами N+, показанный на рис. 3.18 и рис. 3.19, который стал одним из компонентов ротаксана. Ось, продетая через цикл, была собрана из звеньев – (СН2) 2-О-, между которыми были помещены фрагменты -NH – С6Н4-С6Н4-NH– и -O – С6Н4-С6Н4-O– на некотором расстоянии друг от друга. Так как у цикла положительный заряд, то он перемещается по оси к фрагменту -NH – С6Н4-С6Н4-NH-, то есть к тому месту, где у атомов азота находятся неподеленные электронные пары. Если затем подкислить всю систему, то есть ввести в реакционную среду протоны Н+, то они присоединятся к атомам азота, и образуется – NH2+–С6Н4-С6Н4-NH2+-. Этот участок оси перестанет быть «привлекательным» для имеющего свои четыре положительных заряда цикла, и он начнет искать другое место с неподеленными электронными парами. Они есть у атомов О во фрагменте -O – С6Н4-С6Н4-O-, и цикл переместится к нему. Способность присоединять положительно заряженные частицы у атомов N выше, чем у О, и поэтому цикл вначале «не замечал» второе «заманчивое» место, а нашел его только после подкисления системы. Движения цикла обратимы, они могут управляться не только подкислением-подщелачиванием среды, но и электрохимическим способом – изменением внешнего электрического потенциала с "+" на " – " (рис. 3.20).
Стоддарт назвал эту систему «молекулярным челноком», который меняет свое положение в зависимости от внешнего воздействия. Два фиксированных положения соответствуют логической схеме 0 или 1, на которой основаны все современные вычислительные устройства. На основе молекул «челнока» Стоддарту совместно с американским ученым Дж. Хитом удалось создать блок памяти емкостью 20 кБ на площади всего в 0,01 мм2, что в 10 раз меньше, чем срез человеческого волоса.
Полученный результат обнадеживает, поскольку современные компьютеры, поражающие нас быстродействием и компактностью, достигли границ своих возможностей. В устройствах следующего поколения носителями информации будут отдельные молекулы, что позволит увеличить плотность записи информации в десятки раз. Пока такие молекулярные системы нестабильны – в сравнении с кристаллическим кремнием. Однако вспомним, какие сомнения вызывала возможность использования полупроводников в эпоху ламповых компьютеров – и тем не менее полупроводники победили. А потому, торжественно обобщая все рассмотренное, скажем, что молекулы "челнока" знаменуют приближение века молекулярной электроники.
Совсем другой подход
При создании молекулярных механических устройств Саваж и Стоддарт брали за основу катенаны и ротаксаны. Оказалось, что существует другой подход к решению проблемы: его продемонстрировал голландский химик Бернард Феринга. Он показал, что можно управлять подвижностью отдельных частей молекулы совершенно иным образом.
Известно, что отдельные фрагменты молекулы могут свободно поворачиваться вокруг одинарной связи – например, в этане (рис. 3.21а), однако вращение вокруг двойной связи (этилен) невозможно (рис. 3.21б).
Феринга преодолел этот запрет. Он синтезировал молекулу, в которой двойная связь находится между двумя плоскими фрагментами, собранными из спаянных двух бензольных ядер и циклогексанового цикла. К этим фрагментам присоединены метильные группы СН3, роль которых очень важна: они частично заслоняют бензольные ядра из соседних фрагментов (рис. 3.22а). При действии импульса ультрафиолета двойная связь ослабляется и немного растягивается, и становится возможным взаимоповорот присоединенных блоков вокруг связи на 180