Лаборатория химических историй. От электрона до молекулярных машин — страница 25 из 48

Появление полупроводниковых компьютеров способствовало быстрому развитию квантовой химии, и стали широко применяться квантово-химические расчеты, ранее выполнявшиеся ручными вычислениями. Все заметно упростилось и ускорилось, когда вычисления стали выполнять современные компьютеры. Возникли специальные программы, позволяющие химику-синтетику проводить подобные расчеты самостоятельно. Наиболее известна квантово-химическая программа Gaussian, разработанная с участием Джона Попла, лауреата Нобелевской премии 1998 г. по химии. Всего было создано свыше десятка подобных различных программ. Весьма привлекательна для рядовых химиков компактная бесплатная программа Priroda, созданная сотрудником МГУ имени М. В. Ломоносова Д. Н. Лайковым. Она отличается очень высоким быстродействием.

С помощью таких программ химик, исходя всего лишь из структурной формулы, может рассчитать:

а) наиболее энергетически выгодную пространственную структуру молекулы;

б) энтальпию образования вещества – фактически это энергия, которая выделяется при образовании молекулы из всех составляющих ее элементарных частиц;

в) тепловой эффект реакции;

г) заряды на атомах, входящих в состав молекулы;

д) ожидаемый инфракрасный и ядерно-магнитный спектр конкретного соединения;

е) внешний вид молекулярных орбиталей (о них подробнее рассказано в главе "Самая главная частица и ее жилище").

Существует еще целый ряд неупомянутых параметров, которые можно вычислить с помощью таких программ и которые химики используют для объяснения происходящих превращений. В процессе расчета программа выводит на экран молекулу в виде объемной модели. При желании можно посмотреть, как программа будет деформировать молекулу в поисках оптимальной структуры (фильм, увлекательный для химика). Кроме того, можно увидеть, как выглядят упомянутые в пункте е) полупрозрачные области наиболее вероятного расположения электронов – орбитали, внешне напоминающие облака.

Напомним, что все это можно проделать для пока не полученной, а только нарисованной молекулы. В отличие от упомянутой ранее молекулярной механики, при расчетах учитывается поведение электронов, что делает получаемые результаты намного более точными.

Постепенно химиков перестали удовлетворять знания о внутреннем строении молекулы – они захотели узнать, как она реагирует с другими молекулами. Иными словами, ученые заинтересовались не тем, как она выглядит, а тем, что с ней происходит. Были разработаны некоторые экспериментальные приемы, позволяющие понять механизмы протекающих реакций. Например, в реагирующую молекулу можно ввести изотопную метку – заменить, например, один из атомов на его более тяжелый изотоп – и далее проследить, в какое место она переместится в процессе реакции. Впрочем, таким способом мы фиксируем лишь начальный и конечный момент – и не можем увидеть процесс, поскольку химическое взаимодействие – то есть перемещение электронов – проходит молниеносно и потому скрыто от глаз исследователей.

Частично решить эту проблему позволила работа американского химика А. Зевейла, лауреата Нобелевской премии 1999 г. по химии. Он направлял на реагирующие молекулы очень короткие (фемтосекундные, 10–15 с) лазерные импульсы и анализировал полученные спектры, то есть получал «фотографию» быстродвижущихся объектов, используя мгновенную «фотовспышку». Однако этот метод экспериментально труден и применим только к простым объектам.

Все упомянутые расчетные программы, в том числе и Gaussian, оперируют с молекулами, которые находятся в "спокойном" состоянии, а не в процессе реакции. Могут ли эти программы показать не то, как выглядит молекула, а то, как она реагирует с другими молекулами? Теоретически такое возможно, но при расчете крупных биомолекул для проведения вычислений нужно невероятное количество времени, а если принять во внимание то, что процесс расчета иногда останавливается и требует внесения исправлений и уточнений, то станет ясно, что дождаться результатов расчета будет практически нереально.

Наблюдать протекание химических реакций с помощью квантовой химии стало возможным благодаря усилиям трех нобелевских лауреатов: американского ученого Мартина Карплуса и двух израильских ученых – Майкла Левитта и Арье Варшеля, получивших в 2013 г. Нобелевскую премию "за развитие метода масштабных моделей для сложных химических систем".

Фотография с размытыми краями

На заре фотографии фотообъективы были несовершенны, а получающиеся изображения размыты по краям. В результате фотопортреты стали намеренно изготавливать в овале с нерезкими краями, что постепенно превратилось в эстетическую норму: это позволяло сосредоточить взгляд на лице, изображенном на фотопортрете, и не обращать внимания на второстепенные детали. Подобный стиль – акцентирование внимания на наиболее важных деталях снимка – сохранился и до нашего времени, несмотря на то что современные фотообъективы дают резкое изображение по всему полю снимка. Именно этот принцип использовали авторы премированной работы, разработав расчетную программу, позволяющую с различной степенью точности определять особенности структуры отдельных фрагментов молекулы.

Один из будущих лауреатов Мартин Карплус, работая в Гарвардском университете (Кембридж, США) в начале 1970-х гг., изучал возможность создания компьютерных программ, которые могли бы имитировать химические реакции с помощью квантовой химии. В середине 1970-х гг. второй из будущих лауреатов – Арье Варшель – прибыл в Гарвард для совместной работы с М. Карплусом. Ученым удалось создать программу, которая осуществляла расчет молекулы следующим образом: для фрагментов, соединенных простыми связями, проводились приблизительные вычисления методами молекулярной механики, а для двойных связей использовался точный квантово-химический расчет. В качестве объекта был взято соединение, показанное на рис. 5.1.



Рассчитанные инфракрасные спектры соединения превосходно совпали с экспериментальными. Это был первый опыт создания гибридной расчетной программы, сочетающей молекулярную механику и квантово-химические методы.

На следующем этапе к работе подключился третий будущий лауреат – Майкл Левитт, который в 1976 г. совместно с Арье Варшелем создал усовершенствованную программу, позволяющую рассчитывать отдельные фрагменты: те, которые участвуют в реакции и потому наиболее интересны, – с помощью квантовой химии, а остальную часть молекулы – приближенно, молекулярной механикой. Кроме того, была введена еще одна стадия – упрощенный расчет, учитывающий влияние окружающей среды (растворителя). Работу удалось осуществить и потому, что в Институте им. Вейцмана (г. Реховот, Израиль) находился очень мощный по тем временам компьютер, который сотрудники ласково называли Големом (Голем – глиняный великан в еврейской мифологии).

Авторы премированной работы изобразили общий принцип новой системы расчета, поместив рядом портрет А. Нобеля с размытыми краями и окружностью, определяющей область детального рассмотрения, что делает основную идею еще более понятной (рис. 5.2).



Ничего принципиально нового в предложенной идее нет. Если вы надумали собрать механические часы, то при изготовлении шестеренок вы позаботитесь о максимально точной обработке зубьев, чтобы обеспечить точность хода, а кронштейны, на которых закреплены шестеренки, не потребуют столь детальной обработки. Заслуга авторов премированной работы в том, что им удалось создать расчетную программу, работающую по такому же принципу.

В качестве объектов для расчета авторы выбрали наиболее сложные из известных соединений – белки, многие особенности строения которых к тому моменту были изучены. Естественно, возникла необходимость не только понять строение белков, но и увидеть их работу в живом организме. Авторы исследования, о котором идет речь, перед проведением расчета упрощали строение белковой молекулы следующим образом: часть белковой молекулы, не участвующей в изучаемом процессе, представляли в виде набора шаров соответствующего радиуса (рис. 5.3), и в итоге эта часть молекулы напоминала нитку бус, собранных затейливым образом.



В результате расчетов удалось, например, воссоздать процесс разрушения клеточных стенок бактерий при действии биокатализатора – фермента лизоцима, который в больших количествах содержится в слюне и в слезной жидкости, чем и объясняются их антибактериальные свойства, приводящие к гибели бактерий. Весь процесс можно наблюдать на экране компьютера в замедленном темпе, в то время как в реальности он проходит в доли секунды.

Одно из ярких достижений разработанной методики – моделирование работы белков, входящих в состав скелетных мышц, которые преобразуют химическую энергию в механическую. Благодаря этому мышцы могут совершать механическую работу. Исследование открывает перспективы в создании современных управляющих устройств и указывает направление разработок новых биоэнергетических механизмов – молекулярных моторов (о чем рассказано в главе "Молекулярные механизмы и машины").

Авторам работы и их многочисленным последователям, использовавшим новую схему расчета, удалось изучить многие биологические процессы. Метод оказался исключительно результативным не только для изучения биохимических реакций, но и при анализе сложных каталитических процессов в органической химии.

Коротко о лауреатах и их нобелевских докладах

Мартин Карплус родился в 1930 г. в Вене, Австрия, получил образование в Страсбургском университете во Франции, в 1951 г. защитил диссертацию в Калифорнийском технологическом институте, США, где он работал под руководством дважды лауреата Нобелевской премии Лайнуса Полинга. В своем интервью Карплус сказал, что Полинг оказал на него большое влияние и научил доверяться интуиции при решении научных вопросов. В завершение нобелевской лекции М. Карплус вывел на экран имена 244 (!) коллег, с которыми ему довелось сотрудничать.


Майкл Левитт