Еще один «родственник» углерода
Речь пойдет о следующем элементе группы углерода после кремния – это германий. Сходства с углеродом у него практически нет, и правильнее было бы его назвать соперником кремния. Открытие германия было предсказано Д. И. Менделеевым (экасилиций) в 1871 г., а получен он был в 1886 г. К. Винклером, после чего между двумя учеными возникли дружеские отношения.
Наступил этап последовательного изучения германия, и были найдены его полезные свойства. Элементарный германий "развивался" по своим законам, открыв эпоху полупроводниковой электроники и продемонстрировав необычные оптические свойства (оптика для приборов ночного видения). В то же время изучение химических соединений этого элемента во многих случаях воспроизводило химию соединений кремния – ближайшего соседа и аналога по периодической системе, который был изучен более масштабно.
Германий стал более "управляемым", когда к нему применили опыт, накопленный при работе с кремнийорганическими соединениями. В химии германия появилась отдельная глава, когда исследователи перешли к соединениям, содержащим органическую группу у атома германия – то есть группировку С-Ge, а также поместили между атомами германия атомы кислорода. Соединения с фрагментами -RGe-O-GeR– называют органогермоксанами, по аналогии с органосилоксанами. Были получены различные германийсодержащие циклические соединения, напоминающие органосилоксановые структуры (рис. 6.27).
Вполне естественно было ожидать появления металлсодержащих гермоксанов (M-O-Ge), то есть класса соединений, родственного металлорганосилоксанам (M-O-Si). Сравнительно недавно он действительно (в 2016 г.) был создан в результате работы отечественного химика-элементоорганика А. Н. Биляченко (Институт элементоорганических соединений РАН и Российский университет дружбы народов), который уже имел большой опыт обращения с металлосилоксанами. Это подтверждает и показанная выше диаграмма (рис. 6.24): все структуры, кроме одной, получены А. Н. Биляченко.
Методики синтеза металлсодержащих гермоксанов близки к тем, что были использованы при получении металлорганосилоксанов. Некоторые из полученных каркасов имеют форму, подобную кремнийсодержащим соединениям. Это призматические структуры, имеющие в основаниях призмы органогермоксановые циклы различного размера – например, тетрагермоксановые, удерживающие шесть ионов Cu (рис. 6.28а), пентагермоксановые с четырьмя ионами Ni (рис. 6.28б) или с шестью ионами Cu в структуре (рис. 6.28в). Для наглядности гермоксановые циклы показаны утолщенными. В соединении с четырьмя ионами никеля (рис. 6.28б) при температуре 1,8 К зафиксирована петля гистерезиса с весьма значительной величиной коэрцитивной силы 580 Э (сравни с рис. 6.26).
Гексагермоксановые циклы могут удерживать одновременно шесть (рис. 6.29, вверху) или восемь ионов Cu (рис. 6.29, внизу).
При изменении методики синтеза были получены соединения, архитектура которых оказалась весьма экзотической и не имеющей аналогий с металлосилоксанами. Три пентагермоксановых цикла, расположенных в форме трехлепесткового цветка, одновременно удерживают шесть ионов Fe и два иона Na (рис. 6.30а). Ионы Fe, находящиеся внутри каркаса, расположены в трех взаимоперпендикулярных плоскостях (рис. 6.30б). У ионов натрия особая роль: они координационно связываются с двумя гермоксановыми циклами, расположенными в соседних молекулах. В результате образуется зигзагообразная цепочка (рис. 6.30в).
Получена медьсодержащая гермоксановая структура, содержащая 21 ион Cu – это рекордное количество. Из-за своей формы молекула получила в научной литературе название «артишок» (рис. 6.31).
Это соединение оказалось эффективным катализатором окисления циклогексана до циклогексанола и циклогесанона по схеме, показанной на рис. 6.32.
В одной структуре могут сочетаться ионы металлов различной природы – например, Fe и Cu (рис. 6.33а). Каркас собран из двух фрагментов – крупного агрегата из пяти ионов Fe в окружении двенадцатизвенного гермоксанового цикла (для наглядности он показан плоским на рис. 6.33б) и небольшой крышки, содержащей два иона Cu (рис. 6.33в). Соединение эффективно катализирует окисление углеводородов, что было изучено на модельной реакции, показанной на рис. 6.32.
Показанные структуры подтверждают «индивидуальность» германия, который способен образовывать каркасы с экзотической архитектурой. Несмотря на сравнительную «молодость» металлогермоксанов, удалось показать их некоторые полезные – магнитные и каталитические – свойства, упомянутые ранее.
Глава 7Тысячелетия спрессованы в минуты
История науки знает примеры, когда проведенные в какой-либо определенной области исследования начинают представлять интерес для другой, иногда довольно далекой области знаний. Например, изучение азокрасителей привело к созданию широко известных лекарственных препаратов сульфаниламидов. Диметил– и дибутилфталат, синтезированные для добавления в жесткий поливинилхлорид и придания пластичности, со временем стали основой целого класса репеллентов, действующих на нервные окончания обонятельных органов насекомых. Интенсивные поиски растворителя для полиакрилонитрила, который поначалу ни в чем не растворялся, позволили найти диметилформамид (Me)2NC(O)H, который в итоге «возглавил» новый класс растворителей, широко применяемых в лабораторной практике и на производстве. Существуют и другие подобные примеры.
Заметить, не пройти мимо
Далее расскажем о похожей ситуации, возникшей при изучении уже описанного выше класса элементоорганических соединений – металлорганосилоксанов. Напомним, что эти соединения построены из фрагментов RSi-O-M, где R – органическая группа, а М – поливалентный металл. Получение этих соединений проводят в органических растворителях.
Синтезы металлорганосилоксанов, проводимые в разное время независимыми исследователями, приводили к весьма похожим результатам. В процессе синтеза полученные металлорганосилоксаны перегруппировывались – частично, а иногда и полностью. В результате получались продукты структурной перестройки – во-первых, органосилоксан, не содержащий металла совсем, а во-вторых, продукт с повышенным содержанием металла в сравнении с исходным соединением. Это легко обнаружить, если обратить внимание на величину атомного отношения M/Si в исходном и конечном соединении. Примеры показаны на рис. 7.1.
В некоторых случаях, помимо органосилоксанового соединения, не содержащего металл, образовывался оксид металла, вообще не содержащий кремния (рис. 7.2). Процесс затрагивает широкий круг металлосилоксанов, содержащих различное число органических групп R у кремния. Перегруппировка протекает наиболее полно, вплоть до образования оксидов металлов, когда в структуре присутствуют ионы переходных металлов Ni, Co, Cu, Fe. Силоксановый продукт реакции в некоторых случаях представляет собой каркасную структуру (рис. 7.2).
Таких примеров было найдено довольно много. Исследователи обычно описывали их как побочные реакции, которые вызывали скорее досаду, нежели интерес, поскольку мешали получить нужное соединение в достаточном количестве. Но после того, как все результаты свели воедино, постепенно выявились и закономерности. Выяснилось, что в широко известных свойствах ионов металлов заложена движущая сила перегруппировки. Каждый ион металла, находясь в структуре молекулы, старается окружить себя атомами, содержащими неподеленные пары электронов O:, N:, P: и другие (неподеленные электронные пары обозначены точками). Именно эти пары образуют с ионом металла координационную связь: обычно говорят, что металл таким способом заполняет свою координационную сферу. Делает это он весьма настойчиво, но выбирает в соседство атом, который наиболее охотно отдает пару для образования координационной связи электронов. В металлорганосилоксанах присутствует два типа атомов кислорода – во фрагментах Si-O-Si и Si-O-M. Атомы кислорода во фрагментах Si-O-Si крайне неохотно отдают свои электроны соседнему иону металла, а во фрагментах Si-O-M это происходит намного легче. Но существует еще третий фрагмент – М-О-М, и его атом кислорода наиболее охотно отдает свою электронную пару для образования координационной связи. Обратите внимание: он будет отдавать пару не тому иону металла, который рядом (между ними уже есть связь), а тому, который в соседнем фрагменте. Таким образом, в результате перегруппировки в системе возникает больше фрагментов M-O-M, поскольку ионы металлов предпочитают именно их для заполнения координационной сферы. В схеме перегруппировки на первой стадии происходит временное объединение двух звеньев Si-O-M. Образуется переходный комплекс (показано пунктирными линиями), координационные и обычные связи меняются местами, затем переходный комплекс распадается, образуется дополнительное звено Si-O-Si и совершенно новое звено М-О-М (рис. 7.3).
Торможение и ускорение процесса
Рассмотрим строение некоторых каркасных металлосилоксанов, которые оказались устойчивыми к перегруппировке. В этих соединениях координационная сфера металла заполнена, и перегруппировка в общем не требуется. Например, в кристаллическом каркасном металлосилоксане ионы меди окружены атомами O, расположенными в соседних группировках Si – O – Сu (рис. 7.4а, координационные связи показаны пунктиром). Иногда в такой координации дополнительно участвует анион Cl-, расположенный в центре каркаса, что показано на примере кобальтсодержащего соединения (рис. 7.4б). Каркасы представляют собой шестигранные призмы: их форма близка к цилиндрической, напоминающей барабан.
В показанных на рис. 7.4 соединениях перегруппировка заторможена, но не исключена. Логика подсказывает еще один способ торможения перегруппировки – следует затруднить образование переходного комплекса, показанного на рис. 7.3. Этого можно достичь, если присоединить к атому кремния объемную органическую группу – например, нонильную С