Die Sehstörungen bei Schussverletzungen der kortikalen Sehsphäre (Зрительные нарушения как результат пулевого ранения в зрительной области коры). Leipzig: W. Engelmann, 1909.
Прослеживая непосредственную связь между локализацией повреждения в мозге и местом расположения слепого пятна, Иноуэ обнаружил первую из известных зрительных карт мозга. Впрочем, утверждение, что в мозге существует зрительная карта (не говоря уже о том, что их несколько), может показаться нам абсурдным. Возможно, это связано с нашим привычным опытом обращения с географическими картами. Мы привыкли к таким зрительным указателям, как туристические планы или схемы линий метро. А эти карты состоят из материи – реальной физической материи, такой как краска на бумажном листе, изготовленном из древесной целлюлозы.
Конечно, сегодня мы часто видим карты на экранах, и это показывает, в какой степени несущественно, из чего сделана карта. Когда мы загружаем на экран компьютера маршрут передвижения, этот маршрут представлен в виде световых волн разной длины, исходящих от экрана. Если мы распечатаем этот план на бумаге, чтобы взять с собой в дорогу, мы воссоздаем его на бумаге, но изображение остается тем же самым. И в этом прелесть отображения: оно позволяет нам обмениваться информацией о сущностях и явлениях без необходимости их воспроизведения. Мне не нужно заново строить пирамиды, чтобы показать вам, как они расположены в Гизе. Мне нужны лишь ручка и лист бумаги, палец и запотевшее стекло или палочка на песчаном пляже. Короче говоря, совсем не важно, из чего сделана карта. Она может быть фактически из любого материала.
Карты мозга не нарисованы на бумаге и не отображены на экране; они сделаны из клеток. В мозге содержится несколько видов клеток, половину из которых составляют нейроны. Нейроны связаны между собой красивыми ветвистыми отростками, переносящими электрические и химические сигналы от одного нейрона к другому. Нейрон может производить электрические импульсы один за другим, и скорость испускания этих импульсов зависит от той информации, которую отображает нейрон.
Когда я говорю о скорости испускания импульсов, называемой скоростью возбуждения, я сразу представляю себе школьный класс, в котором младшие школьники стараются привлечь внимание учителя: “Меня, меня, спросите меня! А меня?!” Чем чаще они выкрикивают, тем настоятельнее звучит их призыв – будь то желание ответить на вопрос учителя или просьба отлучиться в туалет. Выкрики учеников в школьном классе, как импульсы, посланные разными нейронами мозга, могут иметь совершенно разный смысл. Но в любом случае частота испускаемых сигналов отражает срочность или важность сообщения. Когда скорость возбуждения нейрона возрастает и происходит быстрый залп импульсов, значит, в этот момент нейрон хочет передать важную информацию.
Представьте себе, что мы вскрываем чей-то череп и расправляем складки задней части мозга, так что область V1 предстает в плоском виде. Эта плоская поверхность мозга состоит из нейронов, как бумага – из древесной массы. Лист нейронов аналогичен листу бумаги, на которой печатают обычную карту. Но вместо красок разного цвета карты мозга представляют информацию через частоту возбуждения нейронов, из которых они состоят: одни возбуждаются активно, а другие почти совсем не возбуждаются. В техническом аспекте частота возбуждения нейрона – это число электрических сигналов, которые он посылает за определенный промежуток времени. Можно сказать, что в картах мозга электричество и время играют такую же роль, как краска на обычных картах.
Клетки, электричество и время. Это сырье, необходимое мозгу для создания карт.
Возможно, к концепции карт мозга нужно привыкнуть. Они не похожи на обычные карты. Однако карта в области V1 по своей сути не отличается от карты в бардачке автомобиля. Аналогично тому, как мы превращаем карту на экране компьютера в карту, распечатанную на бумаге, мы переносим эту же карту с листа бумаги в область V1, просто глядя на нее. Одна не хуже другой, и все они вполне реальные.
Еще одно отличие карт мозга от обычных географических заключается в том, что первые изменчивы. Географическая карта, начерченная на папирусе или выгравированная на панно, неподвижна и неизменна. И это нормально, поскольку ландшафтные ориентиры неподвижны, а географические изменения происходят медленно. Когда такие изменения случаются, печатные карты устаревают. Они не могут автоматически обновляться, чтобы соответствовать изменениям, происходящим в мире. Так что нам остается только выбросить старые карты и сделать другие.
Но некоторые карты могут обновляться. Представьте себе карту на приборном экране автомобиля или мобильного телефона. Компьютерные карты могут обновляться и включать в себя информацию о новых торговых центрах или закрытых на ремонт съездах с шоссе. В этих картах используется технология GPS, определяющая наше теперешнее положение в пространстве. Таким образом, наша динамическая компьютерная карта обновляется по мере передвижения. Когда мы движемся к северу, карта на экране тоже движется на север, и мы всегда видим ориентиры, находящиеся в непосредственной близости от нас. Такая карта полностью сбивала бы с толку вне контекста нашего путешествия и в отрыве от знакомой и важнейшей реперной точки – нас самих. Но хотя совмещенный с GPS экран постоянно изменяется или обновляется по мере передвижения, он по-прежнему остается картой. И поскольку на нем есть точка отсчета (наше теперешнее положение в пространстве), мы без труда понимаем эту динамическую карту.
Карта области V1 тоже динамическая. Когда мы перемещаемся из одной точки в другую, обводим глазами пространство или когда движутся окружающие нас предметы, информация на карте обновляется. Но, как и в случае с экраном навигатора, изменение информации, отображаемое в зоне V1, не дезориентирует нас, поскольку оно тоже привязано к знакомой и важной точке отсчета: положению нашего тела и направлению взгляда.
Каким бы странным это ни казалось, карты могут быть сделаны из клеток мозга и могут обновляться и изменяться. Но понять концепцию карт мозга непросто еще вот почему. Даже карту, нарисованную на запотевшем стекле или прочерченную на песке, можно увидеть. Но карта V1 не подсвечивается синим светом, когда мы любуемся океаном, и не разделяется на темные квадраты, когда мы смотрим на шахматную доску. Разве карта не должна быть такой, чтобы мы могли ее видеть?
Ответ на этот вопрос отрицательный. Чтобы понять, почему это так, давайте рассмотрим один короткий мысленный эксперимент из истории разведки. Хотя мы привыкли думать, что шифры и шпионские сообщения являются современным изобретением, невидимые чернила применяются для передачи секретной информации уже на протяжении сотен лет. Во время американской революции Джордж Вашингтон и его шпионы использовали невидимые чернила, изготовленные по специальному рецепту; такие чернила можно было увидеть только при контрастном окрашивании[3]. Написанные ими разведывательные данные, а также планы и, вполне возможно, карты, начерченные невидимыми чернилами, передавались незамеченными и изменили ход войны.
Представьте себе, что один из шпионов Вашингтона использовал такие чернила для зарисовки плана оккупированного Нью-Йорка, отметив места сосредоточения британских войск. Была ли такая невидимая карта настоящей картой? Конечно, да. И Джордж Вашингтон смог бы подтвердить это, обработав бумагу контрастной краской, чтобы чернила стали видимыми. Информация на карте при нанесении красителя не изменилась. Карта отражала план города Нью-Йорка до и после того, как стала видимой невооруженным глазом.
Эта сказка о невидимых чернилах Вашингтона вызывает интересный вопрос: нельзя ли нанести на карту V1 контрастную краску и сделать ее видимой? В 1988 году группа специалистов, занимающихся зрением, проделала именно это и продемонстрировала карту области V1 макаки[4]. Как человек и другие приматы, макаки в значительной степени ориентируются с помощью зрения и имеют карты V1, аналогичные нашим картам.
В этом эксперименте обезьяны смотрели на изображение, вспыхивающее на мониторе компьютера, а им в кровь в это время вводили похожее на сахар вещество, но только с радиоактивной меткой. Наиболее активные нейроны в области V1 захватывали радиоактивное вещество (по той причине, что активно возбуждающиеся нейроны требуют больше энергии). Далее обезьян усыпляли, так что у них переставало биться сердце, и после этого ученые вводили в ткани мозга консерванты, вынимали мозг из черепа и отделяли зрительную кору от остальных частей мозга. Они разравнивали V1, так что она превращалась в плоский лист, замораживали ее и делали срезы с помощью замороженного лезвия. Затем они клали на замороженные срезы рентгеновскую пленку и оставляли на срок от двух недель до трех месяцев, до проявления. Ученые обнаружили удивительные изображения того, что видели обезьяны за несколько недель или месяцев до смерти. Один пример показан на рис. 3: слева изображено то, на что смотрела обезьяна, а справа – картина активности на карте V1, которую удалось визуализировать на срезе мозга животного.
Рис. 3. Соответствие между изображением в правой части поля зрения (слева) и отображением этой информации в виде активности левой половины зоны V1 зрительной карты мозга (фотография среза мозга справа). Источник: The Journal of Neuroscience, vol. 8, no. 5. Copyright © 1988 by the Society for Neuroscience.
Подобно тому, как генерал Вашингтон использовал контрастный краситель, чтобы сделать видимыми полученные им письма и планы, ученые смогли сделать видимой карту V1 путем обработки, развертывания, замораживания и проявки мозга. Иными словами, да, мы можем открыть мозг и увидеть карту в области V1, но это сложно. Новые технологии дали нам более простые способы визуализации карт мозга. Вообще говоря, для этого подходит любой метод, который может превратить возбуждение нейронов в свет в видимом диапазоне длин волн.