Примечания
1
Mishima S. The History of Ophthalmology in Japan. Belgium: J. P. Wayenborgh, 2004; Glickstein M., Whitteridge D. Tatsuji Inouye and the Mapping of the Visual Fields on the Human Cerebral Cortex. Trends in Neurosciences. 10 (1987): 350–53; Kauffmann Jokl D.H., Hiyama F. Tatsuji Inouye – Topographer of the Visual Cortex, Exemplar of the Germany-Japan Ophthalmic Legacy of the Meiji Era. Neuro-Ophthalmology. 31 (2007): 33–43; Gross C.G. Brain, Vision, Memory: Tales in the History of Neuroscience. Cambridge, MA: MIT Press, 1998; Tatsuji I. Die Sehstörungen bei Schussverletzungen der kortikalen Sehsphäre: Nach Beobachtungen an Verwundeten der letzten japanischen Kriege. Leipzig, Germany: W. Engelmann, 1909.
2
Henschen S. On the Visual Path and Centre. Brain. 16 (1893): 170–180.
3
Washington and his spies / Nagy J.A. George Washington’s Secret Spy War: The Making of America’s First Spymaster. New York: St. Martin’s Press, 2016.
4
Tootell R. et al. Functional Anatomy of Macaque Striate Cortex: II. Retinotopic Organization. Journal of Neuroscience. 8 (1988): 153–68.
5
Gertner J. The Idea Factory: Bell Labs and the Great Age of American Innovation. New York: Penguin, 2012; Thackaray A., Brock D.C., Jones R. Moore’s Law: The Life of Gordon Moore, Silicon Valley’s Quiet Revolutionary. New York: Basic Books, 2015; Malone M.S. The Intel Trinity: How Robert Noyce, Gordon Moore, and Andy Grove Built the World’s Most Important Company. New York: HarperCollins, 2014.
6
Filatova O. et al. Cultural Evolution of Killer Whale Calls: Background, Mechanisms, and Consequences. Behaviour. 152 (2015): 2001–38.
7
Pearce J.M. Animal Learning and Cognition: An Introduction, 3rd ed. East Sussex, UK: Psychology Press, 2008.
8
The brains of these animals / Roth G., Dicke U. Evolution of the Brain and Intelligence. Trends in Cognitive Sciences. 9 (2005): 250–57.
9
Herculano-Houzel S. The Remarkable, Yet Not Extraordinary, Human Brain as a Scaled-up Primate Brain and Its Associated Cost. Proceedings of the National Academy of Sciences of the United States of America. 109 (2012): 10661–68.
10
Kuzawa C. et al. Metabolic Costs and Evolutionary Implications of Human Brain Development. Proceedings of the National Academy of Sciences of the United States of America. 111 (2014): 13010– 15.
11
Zhang K., Sejnowski T. A Universal Scaling Law Between Gray Matter and White Matter of Cerebral Cortex. Proceedings of the National Academy of Sciences of the United States of America. 97 (2000): 5621–26.
12
Nelson M., Bower J. Brain Maps and Parallel Computers. Trends in Neurosciences. 13 (1990): 403–8.
13
Grzybowski A., Aydin P. Edme Mariotte (1620–1684): Pioneer of Neurophysiology. Survey of Ophthalmology. 52 (2007): 443–51.
14
Mariotte E. Nouvelle découverte touchant la vue / Œuvres de M. Mariotte. The Hague: Jean Neaulme, 1740, 495–34.
15
Adams D.L. et al. Complete Pattern of Ocular Dominance Columns in Human Primary Visual Cortex. Journal of Neuroscience. 27 (2007): 10391–403.
16
Komatsu H. et al. Neural Responses in the Retinotopic Representation of the Blind Spot in the Macaque V1 to Stimuli for Perceptual Filling-In. Journal of Neuroscience. 20 (2000): 9310–19.
17
Meng M. et al. Filling-in of Visual Phantoms in the Human Brain. Nature Neuroscience. 8 (2005): 1248–54.
18
Ban H. et al. Topographic Representation of an Occluded Object and the Effects of Spatiotemporal Context in Human Early Visual Areas. Journal of Neuroscience. 33 (2013): 16992–7007; Erlikhman G., Caplovitz G.P. Decoding Information About Dynamically Occluded Objects in Visual Cortex. NeuroImage. 146 (2017): 778–88.
19
Duncan R., Boynton G. Cortical Magnification Within Human Primary Visual Cortex Correlates with Acuity Thresholds. Neuron. 34 (2003): 659–71.
20
Duncan, Boynton. Cortical Magnification.
21
Duncan, Boynton. Cortical Magnification.
22
Brindley G.S., Lewin W.S. The Sensations Produced by Electrical Stimulation of the Visual Cortex. Journal of Physiology. 196 (1968): 479–93.
23
Newsome L.R. Visual Angle and Apparent Size of Objects in Peripheral Vision. Perception & Psychophysics. 12 (1972): 300–304.
24
Penfild W. No Man Alone: A Neurosurgeon’s Life. Boston: Little, Brown, 1977.
25
Penfild W., Boldrey E. Somatic Motor and Sensory Representation in the Cerebral Cortex of Man as Studied by Electrical Stimulation. Brain. 60 (1937): 389–443.
26
Duncan R., Boynton G. Tactile Hyperacuity Thresholds Correlate with Finger Maps in Primary Somatosensory Cortex (S1). Cerebral Cortex. 17 (2007): 2878–91.
27
Green B.G. The Perception of Distance and Location for Dual Tactile Pressures. Perception & Psychophysics. 31 (1982): 315–23; Cholewiak R.W. The Perception of Tactile Distance: Influences of Body Site, Space and Time. Perception. 28 (1999): 851–75.
28
Hodgkin A. Edgar Douglas Adrian, Baron Adrian of Cambridge. Biographical Memoirs of Fellows of the Royal Society. 25 (1979): 1–73.
29
Bradley J.K., Tansey E.M. The Coming of the Electronic Age to the Cambridge Physiological Laboratory: E. D. Adrian’s Valve Amplifier in 1921. Notes and Records of the Royal Society of London. 50 (1996): 217–28.
30
Adrian E.D. Afferent Areas in the Brains of Ungulates. Brain. 66 (1943): 89–103.
31
Adrian E.D. The Somatic Receiving Area in the Brain of the Shetland Pony. Brain. 69 (1946): 1–8; Hodgkin. Edgar Douglas Adrian.
32
Adrian. The Somatic Receiving Area.
33
Adrian E.D. The Physical Background of Perception. Oxford: Clarendon Press, 1946; Adrian. Afferent Areas; Adrian. The Somatic Receiving Area.
34
Adrian E.D. Afferent Discharges to the Cerebral Cortex from Peripheral Sense Organs. Journal of Physiology. 100 (1941): 159–91; Adrian. The Somatic Receiving Area.
35
Adrian. The Physical Background.
36
Craner S.L., Ray R.H. Somatosensory Cortex of the Neonatal Pig: I. Topographic Organization of the Primary Somatosensory Cortex (S1). Journal of Comparative Neurology. 306 (1991): 24–38.
37
Adrian. The Physical Background.
38
Adrian. The Physical Background.
39
Catania K.C., Remple M.S. Somatosensory Cortex Dominated by the Representation of Teeth in the Naked Mole-Rat Brain. Proceedings of the National Academy of Sciences of the United States of America. 99 (2002): 5692–97.
40
Catania K.C., Kaas J.H. The Unusual Nose and Brain of the Star-Nosed Mole. BioScience. 46 (1996): 578–86; Catania K.C., Remple F.E. Tactile Foveation in the Star-Nosed Mole. Brain, Behavior and Evolution. 63 (2004): 1–12.
41
Adrian. Afferent Areas.
42
Chapin J.K., Lin C.-S. Mapping the Body Representation in the SI Cortex of Anesthetized and Awake Rats. Journal of Comparative Neurology. 229 (1984): 199–213.
43
Lenschow C. et al. Sexually Monomorphic Maps and Dimorphic Responses in Rat Genital Cortex. Current Biology. 26 (2016): 106–13.
44
Bobrov E. et al. The Representation of SocialFacial Touch in Rat Barrel Cortex. Current Biology. 24 (2014): 109–15.
45
Shea G. Song Without Words: Discovering My Deafness Halfway Through Life. Boston: Da Capo Press, 2013.
46
Saenz M., Langers D.R.M. Tonotopic Mapping of Human Auditory Cortex. Hearing Research. 307 (2014): 42–52.
47
Penfild W., Perot P. The Brain’s Record of Auditory and Visual Experience: A Final Summary and Discussion. Brain. 86 (1963): 595–696.
48
Petkov C. et al. Encoding of Illusory Continuity in Primary Auditory Cortex. Neuron. 54 (2007): 153–65; Riecke L. et al. Hearing Illusory Sounds in Noise: Sensory-Perceptual Transformations in Primary Auditory Cortex. Journal of Neuroscience. 27 (2007): 12684–89.
49
“Как пришло, так ушло” или “Такова жизнь” (англ.). (Здесь и далее, если не указано иное, – прим. перев.)
50
Глаза, как, [он] владеет (англ.).
51
Shea. Song Without Words.
52
Kim H., Bao S. Experience-Dependent Overrepresentation of Ultrasonic Vocalization Frequencies in the Rat Primary Auditory Cortex. Journal of Neurophysiology. 110 (2013): 1087–96.
53
Hill J.E., Smith J.D. Bats: A Natural History. Austin: University of Texas Press, 1984.
54
Suga N., O’Neill W.E. Neural Axis Representing Target Range in the Auditory Cortex of the Mustache Bat. Science. 206 (1979): 351–53.
55
Chandrashekar J. et al. The Receptors and Cells for Mammalian Taste. Nature. 444 (2006): 288–94.
56
Yarmolinsky D.A. et al. Common Sense About Taste: From Mammals to Insects. Cell. 139 (2009): 234–44.
57
Choi N.-E., Han J.H. How Flavor Works: The Science of Taste and Aroma. West Sussex, UK: Wiley Blackwell, 2015.
58
Choi, Han. How Flavor Works.
59
Chandrashekar J. et al. The Cells and Peripheral Representation of Sodium Taste in Mice. Nature. 464 (2010): 297–302.
60
Mueller K. L. et al. The Receptors and Coding Logic for Bitter Taste. Nature. 434 (2005): 225–29.
61
Mueller et al. Receptors and Coding Logic.
62
Zhao G.Q. et al. The Receptors for Mammalian Sweet and Umami Taste. Cell. 115 (2003): 255–66.
63
Mueller et al. Receptors and Coding Logic.
64
Dutta T.M. et al. Altered Taste and Stroke: A Case Report and Literature Review. Topics in Stroke Rehabilitation. 20 (2013): 78–86.
65
Small D.M. Taste Representation in the Human Insula. Brain Structure and Function. 214 (2010): 551–61.
66
Mazzola L. et al. Gustatory and Olfactory Responses to Stimulation of the Human Insula. Annals of Neurology. 82 (2017): 360–70.
67
Chen X. et al. A Gustotopic Map of Taste Qualities in the Mammalian Brain. Science. 333 (2011): 1262–66.
68
Peng Y. et al. Sweet and Bitter Taste in the Brain of Awake Behaving Animals. Nature. 527 (2015): 512–15.
69
Этот метод искусственной активации нейронов называется оптогенетикой. Для того, чтобы светом определенной длины волны (например, синим или красным) активировать нейроны, эти нейроны должны содержать светочувствительные белки, каналородопсины (похожие на опсины нашей сетчатки). Эти белки в естественных условиях есть у водорослей и бактерий. Ученые выяснили структуру этих белков и кодирующих их генов и создали трансгенных мышей, у которых в нейронах появляются каналородопсины, так как геном этих мышей был изменен. Таким образом, в мозге трансгенных мышей оказываются светочувствительные нейроны, которые ученые и могут активировать (или тормозить) по своему желанию с помощью света лазера или диода. (Прим. ред.)
70
Accolla R. et al. Differential Spatial Representation of Taste Modalities in the Rat Gustatory Cortex. Journal of Neuroscience. 27 (2007): 1396–404; Fletcher M.L. et al. Overlapping Representation of Primary Tastes in a Defined Region of the Gustatory Cortex. Journal of Neuroscience. 37 (2017): 7595–605.
71
Hanamori T. et al. Responses of Neurons in the Insular Cortex to Gustatory, Visceral, and Nociceptive Stimuli in Rats. Journal of Neurophysiology. 79 (1998): 2535–45.
72
Schoenfeld M.A. et al. Functional Magnetic Resonance Tomography Correlates of Taste Perception in the Human Primary Taste Cortex. Neuroscience. 127 (2004): 347–53; Prinster A. et al. Cortical Representation of Different Taste Modalities on the Gustatory Cortex: A Pilot Study. PLoS ONE. 12 (2017): e0190164.
73
Avery J.A. et al. Taste Quality Representation in the Human Brain. Journal of Neuroscience. 40 (2020): 1042–52; Chikazoe J. et al. Distinct Representation of Basic Taste Qualities in Human Gustatory Cortex. Nature Communications. 10 (2019).
74
Nevitt G.A., Bonadonna F. Sensitivity to Dimethyl Sulphide Suggests a Mechanism for Olfactory Navigation by Seabirds. Biology Letters. 1 (2005): 303–5.
75
Arzi A., Sobel N. Olfactory Perception as a Compass for Olfactory Neural Maps. Trends in Cognitive Sciences. 15 (2011): 537–45.
76
Stettler D.D., Axel R. Representations of Odor in the Piriform Cortex. Neuron. 63 (2009): 854–64.
77
Nikonov A.A. et al. Beyond the Olfactory Bulb: An Odotopic Map in the Forebrain. Proceedings of the National Academy of Sciences of the United States of America. 102 (2005): 18688–93.
78
Root C.M. et al. The Participation of Cortical Amygdala in Innate, Odour-Driven Behaviour. Nature. 515 (2014): 269–73.
79
Root et al. Participation of Cortical Amygdala.
80
Bergan J.F. et al. Sex-Specific Processing of Social Cues in the Medial Amygdala. eLife. 3 (2014): e02743.
81
Arzi, Sobel. Olfactory Perception.
82
Schiller F. Paul Broca: Founder of French Anthropology, Explorer of the Brain. Berkeley: University of California Press, 1979; McGann J.P. Poor Human Olfaction is a 19th-Century Myth. Science. 356 (2017): eaam7263.
83
Smith G.E. The Evolution of Man: Essays. London: Oxford University Press, 1924.
84
Sarrafchi A. et al. Olfactory Sensitivity for Six Predator Odorants in CD-1 Mice, Human Subjects, and Spider Monkeys. PLoS ONE. 8 (2013): e80621; McGann. Poor Human Olfaction.
85
Ribeiro P.F.M. et al. Greater Addition of Neurons to the Olfactory Bulb Than to the Cerebral Cortex of Eulipotyphlans but Not Rodents, Afrotherians, or Primates. Frontiers in Neuroanatomy. 8 (2014): 23; McGann. Poor Human Olfaction.
86
Majid A., Burenhult N. Odors Are Expressible in Language, As Long As You Speak the Right Language. Cognition. 130 (2014): 266–70.
87
Majid A., Kruspe N. Hunter-Gatherer Olfaction Is Special. Current Biology. 28 (2018): 409–13.
88
Stoddart D.M. The Scented Ape. The Biology and Culture of Human Odour. Cambridge, UK: Cambridge University Press, 1990.
89
Pazzaglia M. Body and Odors: Not Just Molecules After All. Current Directions in Psychological Science. 24 (2015): 329–33; Olsson M.J. et al. The Scent of Disease: Human Body Odor Contains an Early Chemosensory Cue of Sickness. Psychological Science. 25 (2014): 817–23; Lübke K.T., Pause B.M. Always Follow Your Nose: The Functional Signifiсance of Social Chemosignals in Human Reproduction and Survival. Hormones and Behavior. 68 (2015): 134–44.
90
Zhou W., Chen D. Fear-Related Chemosignals Modulate Recognition of Fear in Ambiguous Facial Expressions. Psychological Science. 20 (2009): 177–83.
91
Singh P.B. et al. Smelling Anxiety Chemosignals Impairs Clinical Performance of Dental Students. Chemical Senses. 43 (2018): 411–17.
92
На этот счет существует и другое мнение, см.: М. Хейзелтон. Игры гормонов. М.: CORPUS, 2020.
93
Stern K., McClintock M.K. Regulation of Ovulation by Human Pheromones. Nature. 392 (1998): 177–79.
94
Gelstein S. et al. Human Tears Contain a Chemosignal. Science. 331 (2011): 226–30.
95
Frumin I. et al. A Social Chemosignaling Function for Human Handshaking. eLife. 4 (2015): e05154.
96
Jackson J.H. Selected Writings of John Hughlings Jackson. Volume 1. James Taylor, Gordon Holmes, & Francis Walshe, eds. New York: Basic Books, 1958.
97
Jackson. Selected Writings. Volume 1.
98
Jackson J.H. Report of a Case of Disease of One Lobe of the Cerebrum, and of Both Lobes of the Cerebellum. Medical Mirror (September 1, 1869): 126–27.
99
Jackson J.H. A Series of Cases Illustrative of Cerebral Pathology: Cases of Intra-Cranial Tumour. Medical Times and Gazette (November 30, 1872): 597–99.
100
Critchley M., Critchley E.A. John Hughlings Jackson: Father of English Neurology. New York: Oxford University Press, 1998.
101
Jackson J.H. Case of Epileptiform Seizure, Beginning in the Right Hand. Medical Times and Gazette (December 23, 1871): 767–69.
102
Gross C.G. The Discovery of Motor Cortex and Its Background. Journal of the History of the Neurosciences. 16 (2007): 320–31.
103
Jackson. A Series of Cases Illustrative.
104
Canale D.J. William MacEwen and the Treatment of Brain Abscesses: Revisited After One Hundred Years. Journal of Neurosurgery. 84 (1996): 133–42.
105
MacEwen W. An Address on the Surgery of the Brain and Spinal Cord. British Medical Journal. (1888): 302–9.
106
MacEwen. An Address on the Surgery.
107
Penfild, Boldrey. Somatic Motor and Sensory.
108
Penfild, Boldrey. Somatic Motor and Sensory.
109
Graziano M.S.A. et al. Complex Movements Evoked by Microstimulation of Precentral Cortex. Neuron. 34 (2002): 841–51.
110
Penfild W., Welch K. The Supplementary Motor Area of the Cerebral Cortex. Archives of Neurology & Psychiatry. 66 (1951): 289–317.
111
Graziano et al. Complex Movements.
112
Graziano M.S.A. Ethological Action Maps: A Paradigm Shift for the Motor Cortex. Trends in Cognitive Sciences. 20 (2016): 121–32.
113
Graziano M.S.A. et al. Distribution of Hand Location in Monkeys During Spontaneous Behavior. Experimental Brain Research. 155 (2004): 30–36.
114
Graziano et al. Distribution of Hand Location.
115
Tennant K.A. et al. The Organization of the Forelimb Representation of the C57BL/6 Mouse Motor Cortex as Defined by Intracortical Microstimulation and Cytoarchitecture. Cerebral Cortex. 21 (2011):865–76; Arriaga G. et al. Of Mice, Birds, and Men: The Mouse Ultrasonic Song System Has Some Features Similar to Humans and Song-Learning Birds. PLoS ONE. 7 (2012): e46610.
116
Desmurget M. et al. Neural Representations of Ethologically Relevant Hand/Mouth Synergies in the Human Precentral Gyrus. Proceedings of the National Academy of Sciences of the United States of America. 111 (2014): 5718–22.
117
Bouchard K.E. et al. Functional Organization of Human Sensorimotor Cortex for Speech Articulation. Nature. 495 (2013): 327–32.
118
Debray S.B.E., Demeestere J. Alien Hand Syndrome. Neurology. 91 (2018): 527.
119
Sereno M.I., Huang R.-S. Multisensory Maps in Parietal Cortex. Current Opinion in Neurobiology. 24 (2014): 39–46.
120
Konen C.S. et al. Functional Organization of Human Posterior Parietal Cortex: Grasping- and Reaching-Related Activations Relative to Topographically Organized Cortex. Journal of Neurophysiology. 109 (2013): 2897–908.
121
Andersen R.A., Buneo C.A. Intentional Maps in Posterior Parietal Cortex. Annual Review of Neuroscience 25 (2002): 189–220.
122
Batista A.P. et al. Reach Plans in Eye-Centered Coordinates. Science. 285 (1999): 257–60.
123
Whitlock J.R. Posterior Parietal Cortex. Current Biology. 27 (2017): R681–R701.
124
Andersen, Buneo. Intentional Maps; Gottlieb J. From Thought to Action: The Parietal Cortex as a Bridge Between Perception, Action, and Cognition. Neuron. 53 (2007): 9–16.
125
Stepniewska I. et al. Effects of Muscimol Inactivations of Functional Domains in Motor, Premotor, and Posterior Parietal Cortex on Complex Movements Evoked by Electrical Stimulation. Journal of Neurophysiology. 111 (2014): 1100–119.
126
Assal F. et al. Moving With or Without Will: Functional Neural Correlates of Alien Hand Syndrome. Annals of Neurology. 62 (2007): 301–6.
127
Huberman A.D. et al. Mechanisms Underlying Development of Visual Maps and Receptive Fields. Annual Review of Neuroscience. 31 (2008): 479–509.
128
Ackman J.B. et al. Retinal Waves Coordinate Patterned Activity Throughout the Developing Visual System. Nature. 490 (2012): 219– 25.
129
Tritsch N.X. et al. The Origin of Spontaneous Activity in the Developing Auditory System. Nature. 450 (2007): 50–55.
130
Khazipov R., Milh M. Early Patterns of Activity in the Developing Cortex: Focus on the Sensorimotor System. Seminars in Cell & Developmental Biology. 76 (2018): 120–29; An S. et al. Sensory-Evoked and Spontaneous Gamma and Spindle Bursts in Neonatal Rat Motor Cortex. Journal of Neuroscience. 34 (2014): 10870–83.
131
Dubois J. et al. The Early Development of Brain White Matter: A Review of Imaging Studies in Fetuses, Newborns, and Infants. Neuroscience. 276 (2014): 48–71.
132
Kim H., Bao S. Experience-Dependent Overrepresentation of Ultrasonic Vocalization Frequencies in the Rat Primary Auditory Cortex. Journal of Neurophysiology. 110 (2013): 1087–96.
133
Wöhr M. Ultrasonic Communication in Rats: Appetitive 50-kHz Ultrasonic Vocalizations as Social Contact Calls. Behavioral Ecology and Sociobiology. 72 (2018): 14.
134
Kim, Bao. Experience-Dependent Overrepresentation.
135
Zhang L.I. et al. Persistent and Specific Influences of Early Acoustic Environments on Primary Auditory Cortex. Nature Neuroscience. 4 (2001): 1123–30.
136
Baldoli C. et al. Maturation of Preterm Newborn Brains: An fMRI-DTI Study of Auditory Processing of Linguistic Stimuli and White Matter Development. Brain Structure and Function. 220 (2015): 3733–51; Slater R. et al. Premature Infants Display Increased Noxious-Evoked Neuronal Activity in the Brain Compared to Healthy Age-Matched Term-Born Infants. NeuroImage. 52 (2010): 583–89; Hohmeister J. et al. Cerebral Processing of Pain in School-Aged Children with Neonatal Nociceptive Input: An Exploratory fMRI Study. Pain. 150 (2010): 257–67.
137
Webb A.R. et al. Mother’s Voice and Heartbeat Sounds Elicit Auditory Plasticity in the Human Brain Before Full Gestation. Proceedings of the National Academy of Sciences of the United States of America. 112 (2015): 3152–57.
138
Birch E.E. et al. The Critical Period for Surgical Treatment of Dense Congenital Bilateral Cataracts. Journal of the American Association for Pediatric Ophthalmology & Adult Strabismus. 13 (2009): 67–71.
139
Maurer D. Critical Periods Re-examined: Evidence from Children Treated for Dense Cataracts. Cognitive Development. 42 (2017): 27–36.
140
Amedi A. et al. The Occipital Cortex in the Blind: Lessons About Plasticity and Vision. Current Directions in Psychological Science. 14 (2005): 306–11; Bedny M. Evidence from Blindness for a Cognitively Pluripotent Cortex. Trends in Cognitive Sciences. 21 (2017): 637–48.
141
Kanjlia S. et al. Sensitive Period for Cognitive Repurposing of Human Visual Cortex. Cerebral Cortex (2018). DOI: 10.1093/cercor/ bhy280.
142
Rutkowski R.G., Weinberger N.M. Encoding of Learned Importance of Sound by Magnitude of Representation Area in Primary Auditory Cortex. Proceedings of the National Academy of Sciences of the United States of America. 102 (2005): 13664–69.
143
Super C.M. Environmental Effects on Motor Development: The Case of “African Infant Precocity”. Developmental Medicine and Child Neurology. 18 (1976): 561–67.
144
Amunts K. et al. Motor Cortex and Hand Motor Skills: Structural Compliance in the Human Brain. Human Brain Mapping. 5 (1997): 206–15.
145
Elbert T. et al. Increased Cortical Representation of the Fingers of the Left Hand in String Players. Science. 270 (1995) 305–7.
146
Hyde K.L. et al. Musical Training Shapes Structural Brain Development. Journal of Neuroscience. 29 (2009): 3019–25.
147
Humphreys G.W., Riddoch J.M. To See but Not to See: A Case Study of Visual Agnosia. London: Lawrence Erlbaum Associates, 1987.
148
Humphreys, Riddoch. To See but Not to See.
149
Humphreys, Riddoch. To See but Not to See.
150
Humphreys, Riddoch. To See but Not to See.
151
Warrington E., Shallice T. Category Specific Semantic Impairments. Brain. 107 (1984): 829–54; Biran I., Coslett H.B. Visual Agnosia. Current Neurology and Neuroscience Reports. 3 (2003): 508–12.
152
Kanwisher N. et al. The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception. Journal of Neuroscience. 17 (1997): 4302–11.
153
Kanwisher N. The Quest for the FFA and Where It Led. Journal of Neuroscience. 37 (2017): 1056–61.
154
Kennerknecht I. et al. Prevalence of Hereditary Prosopagnosia (HPA) in Hong Kong Chinese Population. American Journal of Medical Genetics Part A. 146A (2008): 2863–70.
155
Song S. et al. Local but Not Long-Range Microstructural Differences of the Ventral Temporal Cortex in Developmental Prosopagnosia. Neuropsychologia. 78 (2015): 195–206.
156
Parvizi J. et al. Electrical Stimulation of Human Fusiform Face-Selective Regions Distorts Face Perception. Journal of Neuroscience. 32 (2012): 14915–20; в тексте использованы цитаты из фильмов.
157
Трип – психоделическое состояние с измененным восприятием и осознанием происходящего.
158
Pitcher D. et al. The Role of the Occipital Face Area in the Cortical Face Perception Network. Experimental Brain Research. 209 (2011): 481–93.
159
Epstein R., Kanwisher N. A Cortical Representation of the Local Visual Environment. Nature. 392 (1998): 598–601.
160
Aguirre G.K., D’Esposito M. Topographical Disorientation: A Synthesis and Taxonomy. Brain. 122 (1999) 1613–28.
161
Mégevand P. et al. Seeing Scenes: Topographic Visual Hallucinations Evoked by Direct Electrical Stimulation of the Parahippocampal Place Area. Journal of Neuroscience. 34 (2014): 5399–405.
162
Downing P.E. et al. A Cortical Area Selective for Visual Processing of the Human Body. Science. 293 (2001): 2470–73.
163
Downing P.E., Peelen M.V. Body Selectivity in Occipitotemporal Cortex: Causal Evidence. Neuropsychologia. 83 (2016): 138–48.
164
Schwarzlose R.F. et al. Separate Face and Body Selectivity on the Fusiform Gyrus. Journal of Neuroscience. 25 (2005): 11055–59.
165
Moro V. et al. The Neural Basis of Body Form and Body Action Agnosia. Neuron. 60 (2008): 235–46.
166
Lewis J.W. Cortical Networks Related to Human Use of Tools. Neuroscientist. 12 (2006): 211–31.
167
Cohen L. et al. Language-Specific Tuning of Visual Cortex? Functional Properties of the Visual World Form Area. Brain. 125 (2002): 1054–69.
168
Konkle T., Caramazza A. Tripartite Organization of the Ventral Stream by Animacy and Object Size. Journal of Neuroscience. 33 (2013): 10235–42.
169
Gibson J.J. The Ecological Approach to Visual Perception. Boston: Houghton Mifflin, 1979.
170
Arcaro M.J., Livingstone M.S. A Hierarchical, Retinotopic Proto-organization of the Primate Visual System at Birth. eLife. 6 (2017): e26196.
171
Smith L.B. et al. The Developing Infant Creates a Curriculum for Statistical Learning. Trends in Cognitive Sciences. 22 (2018): 325–36.
172
Tsao D.Y. et al. Faces and Objects in Macaque Cerebral Cortex. Nature Neuroscience. 6 (2003): 989–95.
173
Livingstone M.S. et al. Development of the Macaque Face-Patch System. Nature Communications. 8 (2017): 10.1038/ncomms14897.
174
Arcaro M.J. et al. Seeing Faces Is Necessary for Face-Domain Formation. Nature Neuroscience. 20 (2017): 1404–12.
175
Deen B. et al. Organization of High Level Visual Cortex in Human Infants. Nature Communications. 8 (2017): 13995.
176
Grill-Spector K. et al. Developmental Neuroimaging of the Ventral Visual Cortex. Trends in Cognitive Sciences. 12 (2008): 152–62; Golarai G. et al. Experience Shapes the Development of Neural Substrates of Face Processing in Human Ventral Temporal Cortex. Cerebral Cortex. 27 (2015): bhv314.
177
Le Grand R. et al. Expert Face Processing Requires Visual Input to the Right Hemisphere During Infancy. Nature Neuroscience. 6 (2003): 1108–12.
178
Fausey C.M. et al. From Faces to Hands: Changing Visual Input in the First Two Years. Cognition. 152 (2016): 101–7.
179
Dehaene S. et al. Illiterate to Literate: Behavioural and Cerebral Changes Induced by Reading Acquisition. Nature Reviews Neuroscience. 16 (2015): 234–44.
180
Weisberg J. et al. A Neural System for Learning about Object Function. Cerebral Cortex. 17 (2007): 513–21.
181
Peelen M.V., Downing P.E. Category Selectivity in Human Visual Cortex: Beyond Visual Object Recognition. Neuropsychologia. 105 (2017): 177–83.
182
Van den Hurk J. et al. Development of Visual Category Selectivity in Ventral Visual Cortex Does Not Require Visual Experience. Proceedings of the National Academy of Sciences of the United States of America. 114 (2017): E4501–E4510; Wang X. et al. How Visual Is the Visual Cortex? Comparing Connectional and Functional Fingerprints Between Congenitally Blind and Sighted Individuals. Journal of Neuroscience. 35 (2015): 12545–59.
183
Penfield W. The Excitable Cortex in Conscious Man. Springfild, IL: C. C. Thomas, 1958.
184
Penfield. The Excitable Cortex.
185
Penfield. The Excitable Cortex.
186
Killingsworth M.A., Gilbert D.T. A Wandering Mind Is an Unhappy Mind. Science. 330 (2010): 932.
187
Galton F. Inquiries into Human Faculty and Its Development. London: Macmillan, 1883.
188
Galton. Inquiries into Human Faculty.
189
Gould S.J. The Mismeasure of Man, 2nd ed. New York: W. W. Norton, 1996.
190
Pearson J., Kosslyn S.M. The Heterogeneity of Mental Representation: Ending the Imagery Debate. Proceedings of the National Academy of Sciences of the United States of America. 33 (2015): 10089–92.
191
Albers A.M. et al. Shared Representations for Working Memory and Mental Imagery in Early Visual Cortex. Current Biology. 23 (2013): 1427–31.
192
Kaas A. et al. Imagery of a Moving Object: The Role of Occipital Cortex and Human MT/V5+. NeuroImage. 49 (2010): 794–804.
193
O’Craven K.M., Kanwisher N. Mental Imagery of Faces and Places Activates Corresponding Stimulus-Specific Brain Regions. Journal of Cognitive Neuroscience. 12 (2000): 1013–23.
194
Pearson J. et al. Mental Imagery: Functional Mechanisms and Clinical Applications. Trends in Cognitive Sciences. 19 (2015): 590–602.
195
Zatorre R.J., Halpern A.R. Mental Concerts: Musical Imagery and Auditory Cortex. Neuron. 47 (2005): 9–12.
196
Wise N.J. et al. Activation of Sensory Cortex by Imagined Genital Stimulation: An fMRI Analysis. Socioaffective Neuroscience & Psychology. 6 (2016): 31481.
197
Okada K. et al. Neural Evidence for Predictive Coding in Auditory Cortex During Speech Production. Psychonomic Bulletin & Review. 25 (2018): 423–30.
198
Porro C.A. et al. Primary Motor and Sensory Cortex Activation During Motor Performance and Motor Imagery: A Functional Magnetic Resonance Imaging Study. Journal of Neuroscience. 16 (1996): 7688–98.
199
Sood M.R., Sereno M.I. Areas Activated During Naturalistic Reading Comprehension Overlap Topological Visual, Auditory, and Somatomotor Maps. Human Brain Mapping. 37 (2016): 2784–810.
200
Le Bihan D. et al. Activation of Human Primary Visual Cortex During Visual Recall: A Magnetic Resonance Imaging Study. Proceedings of the National Academy of Sciences of the United States of America. 90 (1993): 11802–5.
201
Holmes E.A. et al. Mental Imagery in Depression: Phenomenology, Potential Mechanisms, and Treatment Implications. Annual Review of Clinical Psychology. 12 (2016): 249–80; Pearson et al. Mental Imagery.
202
Baddeley A. Working Memory. Science. 255 (1992): 556–59.
203
Buchsbaum B.R., D’Esposito M. The Search for the Phonological Store: From Loop to Convolution. Journal of Cognitive Neuroscience. 20 (2008): 762–78; Koelsch S. et al. Functional Architecture of Verbal and Tonal Working Memory: An fMRI Study. Human Brain Mapping. 30 (2009): 859–73.
204
Baddeley A. Working Memory.
205
Albers et al. Shared Representations.
206
Siclari F. et al. The Neural Correlates of Dreaming. Nature Neuroscience 20 (2017): 872–78.
207
Harvey B.M., Dumoulin S.O. The Relationship Between Cortical Magnification Factor and Population Receptive Field Size in Human Visual Cortex: Constancies in Cortical Architecture. Journal of Neuroscience. 31 (2011): 13604–12.
208
Bergmann J. et al. Neural Anatomy of Primary Visual Cortex Limits Visual Working Memory. Cerebral Cortex. 26 (2016): 43–50; Bergmann J. et al. Smaller Primary Visual Cortex Is Associated with Stronger, but Less Precise Mental Imagery. Cerebral Cortex. 26 (2016): 3838–50.
209
Galton. Inquiries into Human Faculty.
210
Farah M.J. Is Visual Imagery Really Visual? Overlooked Evidence from Neuropsychology. Psychological Review. 95 (1988): 307–17.
211
Kosslyn S.M. et al. The Role of Area 17 in Visual Imagery: Convergent Evidence from PET and rTMS. Science. 284 (1999): 167–70.
212
Zeman A.Z.J. et al. Loss of Imagery Phenomenology with Intact Visuo-Spatial Task Performance: A Case of “Blind Imagination”, Neuropsychologia. 48 (2010): 145–55.
213
Zeman A.Z.J. et al. Lives Without Imagery – Congenital Aphantasia. Cortex. 73 (2015): 378–80.
214
Zeman et al. Lives Without Imagery.
215
Anderson M.L. Neural Reuse: A Fundamental Organizational Principle of the Brain. Behavioral and Brain Sciences. 33 (2010): 245–313.
216
W. Perky C.W. An Experimental Study of Imagination. American Journal of Psychology. 21 (1910): 422–52; Ishai A., Sagi D. Visual Imagery Facilitates Visual Perception: Psychophysical Evidence. Journal of Cognitive Neuroscience. 9 (1997): 476–89.
217
James W. The Principles of Psychology. New York: H. Holt & Company, 1890.
218
Somers D.C. et al. Functional MRI Reveals Spatially Specific Attentional Modulation in Human Primary Visual Cortex. Proceedings of the National Academy of Sciences of the United States of America. 96 (1999): 1663–68.
219
Wojciulik E. et al. Covert Visual Attention Modulates Face-Specific Activity in the Human Fusiform Gyrus: fMRI Study. Journal of Neurophysiology. 79 (1998): 1574–78.
220
Veldhuizen M.G. et al. Trying to Detect Taste in a Tasteless Solution: Modulation of Early Gustatory Cortex by Attention to Taste. Chemical Senses. 32 (2007): 569–81.
221
Moore T., Zirnsak M. Neural Mechanisms of Selective Visual Attention. Annual Review of Psychology. 68 (2017): 47–72; Reynolds J.H. et al. Attention Increases Sensitivity of V4 Neurons. Neuron. 26 (2000): 703–14; Sprague T.C. et al. Visual Attention Mitigates Information Loss in Small- and Large-Scale Neural Codes. Trends in Cognitive Sciences. 19 (2015): 215–26.
222
Sprague T.C., Serences J.T. Attention Modulates Spatial Priority Maps in the Human Occipital, Parietal, and Frontal Cortices. Nature Neuroscience. 16 (2013): 1879–87; Moore & Zirnsak. Neural Mechanisms.
223
Nieder A., Dehaene S. Representation of Number in the Brain. Annual Review of Neuroscience. 32 (2009): 185–208.
224
Izard V. et al. Distinct Cerebral Pathways for Object Identity and Number in Human Infants. PLoS Biology. 6 (2008): e11.
225
Harvey B.M., Dumoulin S.O. A Network of Topographic Numerosity Maps in Human Association Cortex. Nature Human Be-haviour. 1 (2017): 0036.
226
Hubbard E.M. et al. Interactions Between Number and Space in Parietal Cortex. Nature Reviews Neuroscience. 6 (2005): 435–48.
227
Toomarian E.Y., Hubbard E.M. On the Genesis of Spatial-Numerical Associations: Evolutionary and Cultural Factors Co-construct the Mental Number Line. Neuroscience & Biobehavioral Reviews 90 (2018): 184–99.
228
Dehaene S. et al. The Mental Representation of Parity and Number Magnitude. Journal of Experimental Psychology: General. 122 (1993): 371–96.
229
Bächtold D. et al. Stimulus-Response Compatibility in Representational Space. Neuropsychologia. 36 (1998): 731–35; Hartmann M. et al. There Is More Than “More Is Up”: Hand and Foot Responses Reverse the Vertical Association of Number Magnitudes. Journal of Experimental Psychology: Human Perception and Performance. 40 (2014): 1401–14.
230
Hubbard et al. Interactions Between.
231
Zorzi M. et al. Neglect Disrupts the Mental Number Line. Nature. 417 (2002): 138–39; Vuilleumier P. et al. The Number Space and Neglect. Cortex. 40 (2004): 399–410.
232
Rusconi E., Cubelli R. The Making of a Syndrome: The English Translation of Gerstmann’s First Report. Cortex. 117 (2019): 277–83.
233
Kinsbourne M., Warrington E.K. A Study of Finger Agnosia. Brain. 85 (1962): 47–66.
234
Rusconi E. et al. Dexterity with Numbers: rTMS over Left Angular Gyrus Disrupts Finger Gnosis and Number Processing. Neuropsychologia. 43 (2005): 1609–24.
235
Roux F.-E. et al. Writing, Calculating, and Finger Recognition in the Region of the Angular Gyrus: A Cortical Stimulation Study of Gerstmann Syndrome. Journal of Neurosurgery. 99 (2003): 716–27.
236
Rusconi E. et al. A Disconnection Account of Gerstmann Syndrome: Functional Neuroanatomy Evidence. Annals of Neurology. 66 (2009): 654–62.
237
Fayol M. et al. Predicting Arithmetical Achievement from Neuro-Psychological Performance: A Longitudinal Study. Cognition. 68 (1998): B63–B70; Noël M.-P. Finger Agnosia: A Predictor of Numerical Abilities in Children? Child Neuropsychology. 11 (2005): 413–30.
238
Crollen V. et al. The Role of Vision in the Development of Finger-Number Interactions: Finger-Counting and Finger-Montring in Blind Children. Journal of Experimental Child Psychology. 109 (2011): 25–39.
239
Guedin N. et al. Dexterity and Finger Sense: A Possible Dissociation in Children with Cerebral Palsy. Perceptual and Motor Skills. 125 (2018): 718–31.
240
Bender A., Beller S. Cultural Variation in Numeration Systems and Their Mapping onto the Mental Number Line. Journal of Cross-Cultural Psychology. 42 (2011): 579–97.
241
Coull J.T., Droit-Volet S. Explicit Understanding of Duration Develops Implicitly Through Action. Trends in Cognitive Sciences. 22 (2018): 923–37.
242
Núñez R., Cooperrider K. The Tangle of Space and Time in Human Cognition. Trends in Cognitive Sciences. 17 (2013): 220–29; Boroditsky L. Language and the Construction of Time Through Space. Trends in Cognitive Sciences. 41 (2018): 651–53.
243
Núñez R. et al. Contours of Time: Topgraphic Construals of Past, Present, and Future in the Yupno Valley of Papua New Guinea. Cognition. 124 (2012): 25–35.
244
Saj A. et al. Patients with Left Spatial Neglect Also Neglect the “Left Side” of Time. Psychological Science. 25 (2014): 207–14.
245
Merchant H. et al. Neural Basis of the Perception and Estimation of Time. Annual Review of Neuroscience. 36 (2013): 313–36.
246
Eichenbaum H. Time Cells in the Hippocampus: A New Dimension for Mapping Memories. Nature Reviews Neuroscience. 15 (2014): 732–44.
247
Hauk O. et al. Somatotopic Representation of Action Words in Human Motor and Premotor Cortex. Neuron. 41 (2004): 301–7.
248
Dinstein I. et al. Brain Areas Selective for Both Observed and Executed Movements. Journal of Neurophysiology. 98 (2007): 1415–27.
249
Caetano G. et al. Actor’s and Observer’s Primary Motor Cortices Stabilize Similarly After Seen or Heard Motor Actions. Proceedings of the National Academy of Sciences of the United States of America. 104 (2007): 9058–62.
250
Barrós-Loscertales A. et al. Reading Salt Activates Gustatory Brain Regions: fMRI Evidence for Semantic Grounding in a Novel Sensory Modality. Cerebral Cortex. 22 (2012): 2554–63; González J. et al. Reading cinnamon Activates Olfactory Brain Regions. Neuro-Image. 32 (2006): 906–12; Kiefer M. et al. The Sound of Concepts: Four Markers for a Link Between Auditory and Conceptual Brain Systems. Journal of Neuroscience. 28 (2008): 12224–30.
251
Lambon Ralph M.A. et al. The Neural and Computational Bases of Semantic Cognition. Nature Reviews Neuroscience. 18 (2017): 42–55.
252
Hodges J.R., Patterson K. Semantic Dementia: A Unique Clinicopathological Syndrome. Lancet Neurology. 6 (2007): 1004–14.
253
Hasson U. et al. Intersubject Synchronization of Cortical Activity During Natural Vision. Science. 303 (2004): 1634–40.
254
Huth A.G. et al. A Continuous Se-mantic Space Describes the Representation of Thousands of Object and Action Categories Across the Human Brain. Neuron. 76 (2012): 1210–24.
255
Stephens G.J. et al. Speaker-Listener Neural Coupling Underlies Successful Communication. Proceedings of the National Academy of Sciences of the United States of America. 107 (2010): 14425– 30.
256
Nguyen M. et al. Teacher-Student Neural Coupling During Teaching and Learning. bioRxiv (2020).
257
Turing J.D. The Man with the Terrible Trousers // Copeland B.J. et al. The Turing Guide. Eds. Oxford, UK: Oxford University Press, 2017.
258
Hodges A. Alan Turing: The Enigma. New York: Simon & Schuster, 1983.
259
Owen A. M. Into the Gray Zone: A Neuroscientist Explores the Border Between Life and Death. New York: Scribner, 2017.
260
Bayne T. et al. Are There Levels of Consciousness? Trends in Cognitive Sciences. 20 (2016): 405–13.
261
Owen A.M. et al. Detecting Awareness in the Vegetative State. Science. 313 (2006): 1402.
262
Monti M.M. et al. Willful Modulation of Brain Activity in Disorders of Consciousness. New England Journal of Medicine. 362 (2010): 579–89.
263
Cruse D. et al. Bedside Detection of Awareness in the Vegetative State: A Cohort Study. Lancet. 378 (2011): 2088–94.
264
Owen. Into the Gray Zone.
265
Wojciulik E. et al. Covert Visual Attention Modulates Face-Specific Activity in the Human Fusiform Gyrus: fMRI Study. Journal of Neurophysiology. 79 (1998): 1574–78.
266
Bettencourt M.T. de, et al. Closed-Loop Training of Attention with Real-Time Brain Imaging. Nature Neuroscience. 18 (2015): 470–75.
267
Lu H.D., Roe A.W. Functional Organization of Color Domains in V1 and V2 of Macaque Monkey Revealed by Optical Imaging. Cerebral Cortex. 18 (2008): 516–33.
268
Friedman R.M. et al. Modality Maps Within Primate Somatosensory Cortex. Proceedings of the National Academy of Sciences of the United States of America. 101 (2004): 12724–29.
269
Andermann M.L., Moore C.I. A Somatotopic Map of Vibrissa Motion Direction Within a Barrel Column. Nature Neuroscience. 9 (2006): 543–51.
270
Albers et al. Shared Representations; Kamitani Y., Tong F. Decoding the Visual and Subjective Contents of the Human Brain. Nature Neuroscience. 8 (2005): 679–85; Kay K.N. et al. Identifying Natural Images from Human Brain Activity. Nature. 452 (2008): 352–55; Naselaris T. et al. A Voxel-Wise Encoding Model for Early Visual Areas Decodes Mental Images of Remembered Scenes. NeuroImage. 105 (2015): 215–28; Polyn S.M. et al. Category-Specific Cortical Activity Precedes Retrieval During Memory Search. Science. 310 (2005): 1963–66.
271
Horikawa T. et al. Neural Decoding of Visual Imagery During Sleep. Science. 340 (2013): 639–42.
272
Formisano E. et al. “Who” Is Saying “What”? Brain-Based Decoding of Human Voice and Speech. Science. 322 (2008): 970–73.
273
Brodersen K.H. et al. Decoding the Perception of Pain from fMRI Using Multivariate Pattern Analysis. NeuroImage. 63 (2012): 1162– 70; Mitchell T.M. et al. Predicting Human Brain Activity Associated with the Meanings of Nouns. Science. 320 (2008): 1191–95; Vickery T.J. et al. Ubiquity and Specifiсity of Reinforcement Signals Throughout the Brain. Neuron. 72 (2011): 166–77.
274
Miyawaki Y. et al. Visual Image Reconstruction from Human Brain Activity Using a Combination of Multiscale Local Image Decoders. Neuron. 60 (2008): 915–29; Naselaris T. et al. Bayesian Reconstruction of Natural Images from Human Brain Activity. Neuron. 63 (2009): 902–15.
275
Langleben D.D., Moriarty J.C. Using Brain Imaging for Lie Detection: Where Science, Law, and Research Policy Collide. Psychology, Public Policy, and Law. 19 (2013): 222–34; Farah M.J. et al. Functional MRI-Based Lie Detection: Scientific and Societal Challenges. Nature Reviews Neuroscience. 15 (2014): 123–31; Poldrack R.A. The New Mind Readers: What Neuroimaging Can and Cannot Reveal About Our Thoughts. Princeton, NJ: Princeton University Press, 2018.
276
Ganis G. et al. Lying in the Scanner: Covert Countermeasures Disrupt Deception Detection by Functional Magnetic Resonance Imaging. NeuroImage. 55 (2011): 312–19.
277
Chang L., Tsao D.Y. The Code for Facial Identity in the Primate Brain. Cell. 169 (2017): 1013–28.
278
Nuyujukian P. et al. Cortical Control of a Tablet Computer by People with Paralysis. PLoS ONE. 13 (2018): e0204566.
279
VICE on HBO. The Future of Brain Hacking. Видео на YouTube от 21 сентября 2018: https://www.youtube.com/watch?v=rfW-WBB7csTo.
280
Bolu Ajiboye A. et al. Restoration of Reaching and Grasping Movements Through Brain-Controlled Muscle Stimulation in a Person with Tetraplegia: A Proof-of-Concept Demonstration. Lancet. 389 (2017): 1821–30.
281
Западный резервный университет Кейза: полностью парализованный человек вновь движется с помощью технологии – и силы
282
Brindley, Lewin. The Sensations Produced.
283
Naumann J. Search for Paradise: A Patient’s Account of the Artificial Vision Experiment. Bloomington: XLibris Corporation, 2012.
284
Naumann. Search for Paradise.
285
Lewis P.M., Rosenfeld J.V. Electrical Stimulation of the Brain and the Development of Cortical Visual Prostheses: An Historical Perspective. Brain Research. 1630 (2016): 208–24.
286
Bosking W.H. et al. Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics. Annual Review of Vision Science. 3 (2017): 141–66.
287
Beauchamp M.S. et al. Dynamic Stimulation of Visual Cortex Produces Form Vision in Sighted and Blind Humans. Cell. 181 (2020): 774–83.
288
Shull P.B., Damian D.D. Haptic Wearables as Sensory Replacement, Sensory Augmentation, and Trainer – A Review. Journal of NeuroEngineering and Rehabilitation. 12 (2015). DOI 10.1186/s12984-015-0055-z.
289
Thomson E.E. et al. Perceiving Invisible Light Through a Somatosensory Cortical Prosthesis. Nature Communications. 4 (2013): 1482.
290
Baldassarre A. et al. Individual Variability in Functional Connectivity Predicts Performance on a Perceptual Task. Proceedings of the National Academy of Sciences of the United States of America. 109 (2012): 3516–21.
291
Gabrieli J.D.E. et al. Prediction as a Humanitarian and Pragmatic Contribution from Human Cognitive Neuroscience. Neuron. 85 (2015): 11–26; A Neuromarker of Sustained Attention from Whole-Brain Functional Connectivity. Nature Neuroscience. 19 (2016): 165–71.
292
Rashid B., Calhoun V. Towards a Brain-Based Predictome of Mental Illness. Human Brain Mapping. 41 (2020): 3468–535.
293
Gabrieli et al. Prediction as a Humanitarian.
294
Molfese D.L. Predicting Dyslexia at 8 Years of Age Using Neonatal Brain Responses. Brain and Language. 72 (2000): 238–45; Kook H. et al. Multi-stimuli Multi-Channel Data and Decision Fusion Strategies for Dyslexia Prediction Using Neonatal ERPs. Pattern Recognition. 38 (2005): 2174–84.
295
Aharoni E. et al. Neuroprediction of Future Rearrest. Proceedings of the National Academy of Sciences of the United States of America. 110 (2013): 6223–28.
296
Илон Маск, запуск проекта “Нейролинк”, 16 июля 2019 г., Сан-Франциско: https://www.youtube.com/watch?v=r-vbh3t7WVI.
297
Пресс-релиз компании “GSK”: GSK and Verily to Establish Galvani Bioelectronics – A New Company Dedicated to the Development of Bioelectric Medicines, 1 августа 2016 г.: https://www.gsk. com/en-gb/media/press-releases/gsk-and-verily-to-establish-galvani-bioelectronics-a-new-company-dedicated-to-the-development-of-bioelectronic-medicines/.
298
Moses D.A. et al. Real-time Decoding of Question-and-Answer Speech Dialogue Using Human Cortical Activity. Nature Communications. 10 (2019): 3096.
299
Марк Цукерберг, 19 апреля 2017: https://www.facebook.com/ zuck/videos/vb.4/10103661167577621/?type= 2&theater.
300
Duhigg C. How Companies Learn Your Secrets. New York Times Magazine. February 16, 2012.
301
Kramer A.D.I. et al. Experimental Evidence of Massive-Scale Emotional Contagion Through Social Networks. Proceedings of the National Academy of Sciences of the United States of America. 111(2014): 8788–90; Tiku N. Get Ready for the Next Big Privacy Backlash Against Facebook. Wired. May 21, 2017.
302
Mastoras R.-E. et al. Touch-screen Typing Pattern Analysis for Remote Detection of the Depressive Tendency. Scientifiс Reports. 9 (2019): 13414.
303
Giancardo L. et al. Computer Keyboard Interaction as an Indicator of Early Parkinson’s Disease. Scientifiс Reports. 6 (2016): 34468; Nieto-Reyes A. et al. Classification of Alzheimer’sPatients Through Ubiquitous Computing. Sensors. 17 (2017): 1679.
304
The Royal Society, iHuman: Blurring Lines Between Mind and Machine (2019). http://www.royalsociety.org/ihuman-perspective.
305
Yuste R. et al. Four Ethical Priorities for Neurotechnologies and AI. Nature. 551 (2017): 159–63.
306
Zennou-Azogui Y. et al. Hypergravity Within a Critical Period Impacts on the Maturation of Somatosensory Cortical Maps and Their Potential for Use-Dependent Plasticity in the Adult. Journal of Neurophysiology. 115 (2016): 2740–60.
307
Muckli L. et al. Bilateral Visual Field Maps in a Patient with Only One Hemisphere. Proceedings of the National Academy of Sciences of the United States of America. 106 (2009): 13034–39.
308
Sur M. et al. Experimentally Induced Visual Projections into Auditory Thalamus and Cortex. Science. 242 (1988): 1437–41.
309
Roe A.W. et al. A Map of Visual Space Induced in Primary Auditory Cortex. Science. 250 (1990): 818–20.
310
Melchner L. von et al. Visual Behaviour Mediated by Retinal Projections Directed to the Auditory Pathway. Nature. 404 (2000): 871–76.
311
Ballantyne A.O. et al. Plasticity in the Developing Brain: Intellectual, Language, and Academic Functions in Children with Ischaemic Perinatal Stroke. Brain. 131 (2008): 2975–85.
312
Roseboom T. et al. The Dutch Famine and Its Long-Term Consequences for Adult Health. Early Human Development. 82 (2006): 485–91.
313
Diorio J., Meaney M. Maternal Programming of Defensive Responses Through Sustained Effects on Gene Expression. Journal of Psychiatry & Neuroscience. 32 (2007): 275–84.
314
Frankenhuis W.E., Weerth C. de. Does Early-Life Exposure to Stress Shape or Impair Cognition? Current Directions in Psychological Science. 22 (2013): 407–12.
315
Heim C., Nemeroff C.B. The Role of Childhood Trauma in the Neurobiology of Mood and Anxiety Disorders: Preclinical and Clinical Studies. Biological Psychiatry. 49 (2001): 1023–39.
316
Hertzman C. The Biological Embedding of Early Experience and Its Effects on Health in Adulthood. Annals of the New York Academy of Sciences. 896 (1999): 85–95.
317
Hertzman C. Putting the Concept of Biological Embedding in Historical Perspective. Proceedings of the National Academy of Sciences of the United States of America. 109 (2012): 17160–67.
318
Molfese D.L. Predicting Dyslexia at 8 Years of Age Using Neonatal Brain Responses. Brain and Language. 72 (2000): 238–45.