Лаплас. Небесная механика — страница 9 из 25

Между 1785 и 1788 годами Лаплас доказал, что ни изменение эксцентриситета, ни возмущения орбит не являются вековыми неравенствами, что, таким образом, позволяет говорить о стабильности системы:


«Их вековые неравенства должны быть периодическими и заключенными в узкие пределы, так что планетарная система только колеблется около среднего состояния, от которого она отклоняется лишь на очень малую величину».


Орбиты планет почти всегда круглые с ограниченными изменениями их эксцентриситета. Наклон плоскости, в которой они перемещаются, не превышает 3 градусов. Сатурн не потеряется в бесконечном пространстве, Юпитер не столкнется с Солнцем, а Луна — с Землей. Лаплас доказал, что причиной ускорения Юпитера и замедления Сатурна были незначительные возмущения, связанные с расположением двух планет относительно Солнца. Точно так же ускорение движения Луны спровоцировано минимальными изменениями эксцентриситета Земли. Эти возмущения зависят только от закона тяготе ния и имеют тенденцию уравновешиваться с течением времени. Они следуют периодическим, но крайне длинным циклам. Таким образом, мировая система представляет собой отлично отлаженный механизм.

Лаплас сделал вывод, что Вселенная стабильна, не прибегая при этом к божественному вмешательству, как Ньютон. Почти через сто лет оптимист Лейбниц, казалось, одержал победу над британцем: Бог не был необходим для уравновешенного расположения планет, и никакие катаклизмы не грозили равновесию системы. Французский ученый доказал, что речь идет о полностью саморегулируемом механизме, который не нуждался во вмешательстве великого часовщика. Вселенной предопределено быть стабильной навеки.

Более чем через 200 лет успокаивающие прогнозы, сделанные Лапласом, стали нуждаться в небольшой проверке. Ученый решил продемонстрировать стабильность Солнечной системы не только в краткосрочной, но и в долгосрочной перспективе — до скончания века. Но работы по небесной механике французского математика Жюля Анри Пуанкаре (1854— 1912) в конце XIX века и особенно новые открытия XX века, в частности революционная теория хаоса, встали рядом с выводами Лапласа.

Ученый полагал, что решение проблемы трех тел не может быть найдено с помощью простой функции, а требует решения системы дифференциальных уравнений, то есть бесконечной суммы функций (которые зависят от таких орбитальных параметров, как эскцентриситет, наклонение орбиты, масса планеты). Эта система должна соответствовать условиям задачи и, кроме прочего, быть сходящейся для некоторых значений переменных. Лагранж уже нашел одно решение, но он не был уверен, что ряды сойдутся: если мы заменим переменные на их числовые значения, взятые из атмосферных данных, бесконечная сумма членов ряда станет конечным числом.

Поскольку условия не способствовали точным расчетам, Лаплас решил воспользоваться приблизительными значениями с усеченными рядами. В одном бесконечном ряду членов он сохранял только главные, а остальные опускал. Ученый думал получить разумные оценки поведения планет, изменяя лишь первые члены бесконечного ряда и полагая, что остальные члены не будут слишком сильно влиять на результат. Так он определил приблизительные решения для задачи трех тел и увидел, что хотя они и не полностью соответствуют действительности, эти мелкие отклонения несущественны. Он не ошибся.

Ряды, с которыми работал Лаплас, были рядами степеней, то есть бесконечными суммами функций, определенными с помощью последовательных степеней обратной массы Солнца. В первом члене появляется обратная величина массы, во втором — квадрат обратной величины солнечной массы, в третьем — куб и так далее. Учитывая соотношение солнечной массы с массами оставшихся планет и их спутников (отношение массы одной планеты к массе Солнца равно примерно 0,0001), Лаплас решил сократить этот ряд, используя только первый член и опуская члены начиная со степени 2. Он считал их несущественными: при возведении солнечной массы в квадрат частное становится порядка 0,00000001). Для наглядности, вместо того чтобы рассматривать А + В + С +..., он учитывал только А. Этот первый член позволял вывести приближение первого порядка.

Очевидно, что сумма первого и второго членов (А + В) была бы лучшим приближением, а сумма первых трех членов (А + В + С) — еще лучшим, но это потребовало бы погружения в крайне сложные вычисления. На самом деле если последовательные члены убывали, то приближение первого порядка (А) уже представляло собой достаточно точное значение суммы. Именно таким образом действовал французский математик: он использовал приближения первого порядка и не учитывал члены второго, третьего и последующих порядков.

Де Мопертюи, опирающийся на глобус, в знак уважения к Ньютону.

Чертеж из «Первоначал философии» Декарта, демонстрирующий идею вихревых потоков.

Диаграмма из «Математических начал натуральной философии», в которой Ньютон объясняет, каким образом Солнце воздействует на движение Луны вокруг Земли.


Математики XIX века возьмут на себя обязанность доказать, что, к сожалению, большинство рядов небесной механики, открытых математиками предыдущего столетия, не сходятся (их результат дает бесконечное число). Таким образом, они не дали приемлемых решений или сколько-нибудь точных приблизительных значений. Лаплас сохранил только А, но оставшиеся члены В + С, хоть и были небольшими, оказывали свое влияние. С течением времени — в долгосрочном периоде — они могли стать причиной значительных изменений. Также в этом бесконечном ряду внезапно мог появиться новый значительный член, что противоречило бы тенденции следования первых членов. В частности, в уравнении системы Солнце — Юпитер — Сатурн (задача трех тел) Лаплас пренебрег членами, которые считал бесконечными, но которые, вопреки его догадкам, могли вызвать дестабилизацию Солнечной системы. Несколькими годами позже он объяснил свой метод в работе «Изложение системы мира» (книга IV, глава II):


«Расчеты подтвердили эту догадку и показали, что, вообще, средние движения планет и их средние расстояния от Солнца неизменны, по крайней мере если пренебречь четвертыми степенями эксцентриситетов и наклонностей орбит и квадратами возмущающих масс, что более чем достаточно для современных надобностей астрономии».


Далее, в главе XVII, он добавил:


«Исключительная трудность проблем, относящихся к системе мира, заставляет прибегать к приближениям. Но всегда остается опасение, что величины, которыми пренебрегли, окажут заметное влияние на результаты».


И действительно, в 1856 году французский математик Урбен Леверье (1811-1877), известный своим открытием Нептуна, проверил расчеты Лапласа и доказал, что пренебрежение членами высшего порядка может вызвать значимые последствия, поэтому приближенные решения не могут быть использованы для доказательства стабильности Солнечной системы на период больший, чем сто лет.

И лишь в конце XIX — начале XX века один талантливый ученый пролил свет на проблемы небесной механики, оставшиеся нерешенными. Это Анри Пуанкаре — французский математик, которого часто называют последним универсалистом (его вклад является неотъемлемым для всех математических дисциплин). Он доказал, что результаты Лапласа были бы приемлемы, если бы использовалось приближение массы планет второго порядка, но не третьего. Значение этих членов, которые Лаплас счел несущественными, могло бы серьезно возрасти и вызвать дестабилизацию орбит планет. Иногда астроном предоставляет математику практические наблюдения, которые для последнего становятся источником бесконечного множества теоретических данных. Эти данные могут отражать влияние сил, которые сохраняют расстояние между звездами или, напротив, способствуют бесконечному движению некоторых небесных тел. Небольшие отклонения в начальном положении планет могут повлечь значительные изменения их конечного положения. Действительно, любое, даже самое малое возмущение периодического движения (которое соответствует эллипсу Кеплера) может с течением времени переродиться в нестабильную, то есть хаотичную траекторию (рисунок 3 на следующей странице).

В XXI веке передовые исследования осуществляются с помощью компьютеров, и мы знаем, что хаос может возникнуть в некоторых областях Солнечной системы — хотя через более длинные промежутки времени, чем предполагал Лаплас. Нерегулярное движение Луны, не подчиняющееся геометрическому правилу, есть не что иное, как случай аномалии, встречающейся и у других небесных тел. Вспомним хотя бы о странном движении Гипериона (одной из лун Сатурна), который по форме напоминает картофелину и, проходя по орбите, вращается случайным образом. Движение Плутона также негармонично, и в 1988 году это доказали, опираясь на цифровые данные, два ученых из Массачусетского технологического института (МТИ), Джеральд Суссман и Джек Уиздом. Траектория планеты-карлика интересна еще и тем, что ее орбита имеет большие, нежели орбиты других планет, эксцентриситет и наклонение, вследствие чего пересекает орбиту Нептуна (иногда Плутон ближе к Солнцу, чем Нептун). Не исключено, что в отдаленном будущем эти планеты окажутся достаточно близко друг к другу, чтобы произошла космическая катастрофа. При помощи суперкомпьютера Суссман и Уиздом просчитали траекторию Плутона на 845 миллионов лет вперед и доказали, что его орбита становится непредсказуемой и проявит себя как классическая система с хаотичным поведением уже через 20 миллионов лет (это очень короткий срок, учитывая, что возраст Солнечной системы, согласно последним данным, 4500 миллионов лет).

Между тем Дж. Ласкар осуществил примерную оценку зон, где могли бы находиться планеты Солнечной системы в течение ближайших пяти миллиардов лет. Текущие орбиты соответствуют выделенным линиям на рисунке 4, а области, которые могла бы посетить каждая планета, соответствуют зонам, выделенным серым цветом. В случае Меркурия и Венеры две зоны накладываются друг на друга — это показывает более темная серая полоса, — что сулит неопределенное будущее. Неопределенность возвращается в мировую систему.