Леденящие звезды. Новая теория глобальных изменений климата — страница 23 из 44

Киркби нашел нишу для своего проекта «CLOUD» в опытном зале церновского протонного синхротрона. Главное место в эксперименте отводилось диффузионной камере полуметрового диаметра, куда синхротрон должен был подавать регулируемые порции частиц высоких энергий. Некоторые члены группы, приехавшие из Хельсинкского университета, Миссури-Ролла[54] и Венского университета, ранее уже имели дело с такими камерами и получали положительные результаты. Используя наработанный ими опыт, инженеры ЦЕРНа смогли построить большую пузырьковую камеру для изучения следов частиц.

Самые современные приборы, располагавшиеся вокруг диффузионной камеры, предназначались для того, чтобы следить за событиями, вызываемыми пучком частиц из ускорителя. Капли влаги, образующиеся в камере, должны были рассеивать свет и тем самым заявили бы о своем присутствии. Фотографии предполагалось делать с помощью высокоскоростной 3D-камеры, используя технологию, которую впервые применили для наблюдения за солнечными затмениями.

Атомы, молекулы и ионы различных видов и масс, присутствующие в воздухе, должны были попадать в поле зрения сразу нескольких приборов. Три разных масс-спектрометра предназначались для того, чтобы идентифицировать их путем точного измерения молекулярных весов. Еще один прибор измерял подвижность ионов и должен был поведать о том, как они взаимодействуют с молекулами воздуха и других веществ, участвующими в эксперименте.

Чего не хватало заявке на проведение эксперимента, так это осмысленной поддержки со стороны специалистов по химии атмосферы, теоретических обоснований той роли, которую космические лучи должны играть в атмосферных процессах, — ничем иным, кроме предположений, сделанных Франком Расом еще в 1980-е годы, атмосферные химики не располагали. Уточненный сценарий Фанцюнь Юя и Ричарда Турко, объясняющий тот неожиданный нуклеационный взрыв близ берегов Панамы, подоспел как раз вовремя. К апрелю 2000 года каждый пункт заявки был тщательно проработан. Заключительные слова этого текста, в сущности, повторяли те мысли Свенсмарка, с которых и началась вся работа.


«Более ста лет назад Ч. Т. Р. Вильсон изобрел диффузионную камеру, чтобы исследовать феномен погоды. Его изобретение стало необходимейшим инструментом для физики элементарных частиц. Сейчас колесо истории повернулось, и мы возвращаемся назад, к идее Вильсона, дабы исследовать вероятность того, что атмосфера Земли действует подобно большой диффузионной камере, в которой эхом отдаются причуды Солнца»[55].


Когда заявка попала на рассмотрение к двум ведущим метеорологам, ответ оказался неутешительным. Один лауреат Нобелевской премии поднял на смех доказательства Свенсмарка и счел необходимым обратить внимание ЦЕРНа на то, что эти доводы используются лишь как оружие в научно-политических спорах, ведущихся на тему глобального потепления. Группа ученых возмутилась: это не могло быть научным аргументом в пользу или против их проекта. Когда ученые обсуждали рецензию между собой, они отметили, что в высказанных возражениях нет логики:


«Если ситуация настолько неприемлема, насколько это изображается [рецензентом], разве не было бы важно — тем более важно! — показать, что гипотеза Свенсмарка ошибочна?»[56]


Другой рецензент вдавался в технические детали и выражал сомнение в том, что ученые смогут в своем опыте воссоздать условия реальной атмосферы. Здесь специалистам Киркби пришлось самым тщательным образом отвечать на все возражения, пункт за пунктом. Они также решили подчеркнуть, что цель эксперимента заключалась не в том, чтобы доказать, будто облака реагируют на колебания космических лучей, а в том, чтобы лишь посмотреть, возможно ли это вообще.

Наиболее весомым техническим возражением было то, что пробный запуск эксперимента слишком ограничен во времени. «Точкам», представляющим собой лишь зародыши капелек, требуется много часов, чтобы сформироваться и вырасти. При пробном запуске капельки довольно быстро осядут на стенки диффузионной камеры — на это потребуется около 24 часов, — и эксперимент закончится. Группа учла замечание, присоединив к большой реакционной камере два дополнительных резервуара (причем с тефлоновыми стенками), объем которых в шестьдесят раз превышал объем диффузионной камеры. Теперь химические реакции могли спокойно продолжаться несколько дней и даже неделю.

В ЦЕРНе есть собственный специальный комитет, консультирующий генерального директора по вопросам научных программ. Этот комитет потребовал, чтобы ему более подробно обрисовали то, как будут проходить испытания. Эксперимент был новинкой даже для атмосферных физиков, не говоря уже о штатных сотрудниках ЦЕРНа, специалистов в области физики высоких энергий. Киркби надеялся, что «CLOUD» будет одобрен до конца 2000 года, поэтому он потребовал, чтобы его эксперты как можно быстрее подготовили несколько дополнений к проекту. Одно содержало чертежи новой реакционной камеры и некоторые детали начальных стадий опыта. В другом дополнении экспериментаторы объясняли, что испытания, возможно, займут нескольких лет, поэтому эксперимент следует считать одним из постоянных направлений ЦЕРНа, где необходимо разместить полустационарную установку для долговременных исследований атмосферы.

Но разве не должен каждый заниматься своим делом? Члены комитета ЦЕРНа, обсуждавшие проект, принялись размышлять, а следует ли лаборатории физики элементарных частиц вообще влезать в изучение атмосферы, поэтому они все тянули и тянули с принятием решения. Тогда группа сосредоточила свои усилия на том, чтобы вызвать интерес к проекту у специалистов по атмосфере.

В 2001 году Европейское геофизическое общество, Европейское физическое общество и Фонд европейской науки совместно организовали в Женеве рабочую группу, чтобы пересмотреть «ионно-аэрозольно-облачные взаимодействия» и обсудить программу эксперимента. Они привлекли больше пятидесяти специалистов со всего мира. При голосовании по вопросу: «Играет ли роль в изменениях климата ионизация, которую вызывают космические лучи?» — мнения разделились поровну между «да» и «не знаю», но все специалисты были единодушны в поддержке проекта Киркби.

Это удачное заседание ненадолго подняло настроение экспериментаторов, однако через год по «CLOUD» был нанесен тяжелый удар. Значительно более дорогой проект ЦЕРНа — самый мощный в мире ускоритель, Большой адронный коллайдер, еще не был завершен. Он почти опустошил международный бюджет лаборатории, и директорат решил «заморозить» все новые эксперименты. К их числу относился и «CLOUD», не такой уж дорогой для физики высоких энергий.

Не сломившись, Киркби отправился в Америку, чтобы найти необходимый для проекта ускоритель. Более всего ему подходил Стэнфордский линейный ускоритель в Калифорнии. В 1970-е годы Киркби работал там и участвовал в исследованиях, которые завершились грандиозным успехом: Мартин Перл открыл одну из важнейших фундаментальных частиц во Вселенной — тау-лептон. Сам Мартин Перл с воодушевлением присоединился к их команде, так же как и Фанцюнь Юй, к тому времени уже работавший в университете штата Нью-Йорк в Олбани.

Увы, отзывы рецензентов вновь оказались слишком враждебными, и трансатлантическое предприятие закончилось ничем.

Проект пролежал замороженным три года, однако научная аргументация тем временем развивалась дальше, и некоторые доказательства научное сообщество уже признало верными. Ближе к концу 2004 года ЦЕРН снова был готов оказывать поддержку новым экспериментам. Киркби отобрал из своей команды «тяжелую артиллерию», чтобы провести переговоры с наиболее важными руководителями исследовательской службы, не дожидаясь собрания комиссии по научным программам, которое было назначено на январь 2005 года. В этот раз Маркку Кулмала провел убедительную презентацию, и комиссия решила, что ЦЕРНу следует предоставить оборудование для проекта «CLOUD». Сообщая об этом Колдеру, Киркби ликовал:


«Сейчас отношение к нам со стороны ЦЕРНа, по существу, доброжелательное. Предоставленных нам [национальных] средств должно хватить, у нас будет настоящий эксперимент „CLOUD“, и мы сможем наконец приняться за физику. У нас на пути еще много препятствий, но самое трудное позади»[57].


С тех пор как Киркби впервые задумал свой эксперимент, прошло семь лет. ЦЕРН рассматривал официальный проект почти пять лет. Команда надеялась, что при хорошем стечении обстоятельств их главный эксперимент принесет впечатляющие плоды к 2010 году.

Короб в подвале

К этому времени в Датском национальном космическом центре Свенсмарк и его коллеги разработали и запустили более скромный собственный эксперимент. Они решили не дожидаться, пока лаборатория ЦЕРНа снизойдет до того, чтобы предоставить пучок частиц, который высвободит электрические заряды в заданном объеме воздуха. Вместо этого они позволили природным космическим лучам, дождем проливающимся над Копенгагеном, сделать эту работу за них. Эксперимент получил название «SKY»[58]. В датском языке это слово обозначает «облако», в английском — «небо», сочетание вполне символическое.

Когда мюоны, или тяжелые электроны, — частицы, лучше других заряженных гостей из космоса умеющие проникать сквозь земную атмосферу, — атаковали крышу здания на улице Юлианы Марии, что приютила у себя Космический центр, они не привлекали к себе внимания. Мюоны спокойно проходили вниз, сквозь этажи, столы, компьютеры, кофейные чашки и людей. Перед тем как исчезнуть в земной коре, некоторые мюоны просвистывали через большой короб с воздухом, стоявший в подвале, и помогали команде Свенсмарка, вышибая электроны из молекул азота и кислорода и таким образом создавая ионы.

Эксперимент «SKY» был затеян в 2000 году, когда новости из ЦЕРНа приносили одно расстройство. Это был более простой способ приступить к изучению атмосферных процессов, в которых образуются ядра облачной конденсации. Новые расчеты Фанцюнь Юя и Ричарда Турко, объясняющие удивительный взрыв сверхмалых «точек» в небе над Тихим океаном, подкинули Свенсмарку идею об относительно недорогой системе, которая позволила бы взглянуть на это явление в лабораторных условиях. Ее создание стали рассматривать как пилотный проект, требующий меньше затрат, чем основной эксперимент «CLOUD».