бласть сил. И на самом уровне законов движения Лейбниц все изменит как раз благодаря дифференциальному исчислению. Он скажет, что сохраняется не mv, то есть не масса и скорость; то, что сохраняется, есть mv2. Единственное различие в формуле – возведение v во вторую степень, и это стало возможным, потому что именно дифференциальное исчисление позволяет сравнивать степени. У Декарта не было технического средства сказать mv2. С точки зрения языка, геометрии, арифметики и алгебры mv2 есть сугубый нонсенс.
Имея то, что мы сегодня знаем в науке, мы всегда можем объяснить, что сохраняется именно mv2, без всякого обращения к анализу бесконечно малых. Это происходит в лицейских учебниках, но, чтобы доказать это и чтобы формула имела смысл, необходим весь аппарат дифференциального исчисления.
[Тут вмешивается Контесс.]
[Делёз продолжает]: хотя у дифференциального исчисления и у аксиоматики есть точка пересечения, но эта точка совершенно исключительна. В историческом отношении неукоснительный статус дифференциального исчисления подтверждается очень поздно. Что это значит? Это значит, что все, что является условностями, из дифференциального исчисления изгоняется. Но вот даже для Лейбница: что такое искусственный прием? Искусственный прием – это целая совокупность вещей: идея становления, идея предела становления, идея тенденции приближения к пределу – все это рассматривается математиками как абсолютно математические понятия. Идея, что существует количественное становление; идея предела этого становления; идея, что бесконечное множество малых величин приближается к пределу: все это рассматривается как понятия, о чистоте которых говорить невозможно; стало быть, они в реальном смысле не аксиоматичны и не аксиоматизируются. Итак, с самого начала, будь то у Лейбница, будь то у Ньютона или у их последователей, идея дифференциального исчисления неотделима и не отделяется от множества понятий, которые считаются нестрогими и ненаучными. Да и сами Лейбниц и Ньютон готовы это признать. И лишь в конце XIX и в начале XX века дифференциальное исчисление, или анализ бесконечно малых, получит строго научный статус, но какой ценой?
Из него изгонят все ссылки на идею бесконечного; из него изгонят все ссылки на идею предела; из него изгонят все ссылки на идею стремления к пределу. Кто же это сделает? Дифференциальному исчислению дадут весьма любопытные интерпретацию и статус, так как оно перестанет работать с обычными величинами, и ему придадут сугубо порядковую интерпретацию. А значит, это будет способом исследования конечного, конечного как такового. И сделает это величайший математик: Вейерштрасс. Но происходит это очень поздно. И вот он создает аксиоматику исчисления, но какой ценой? Сегодня, когда мы занимаемся дифференциальным исчислением, мы больше не делаем никаких ссылок на понятия бесконечного, предела и тенденции приближения к пределу. У нас статическая интерпретация. В дифференциальном исчислении больше нет никакого динамизма. Господствует статическая и порядковая интерпретация исчисления. Прочтите хотя бы книгу Вюйемена «Философия алгебры» (Vuillemin, «Philosophie de l’algèbre»).
Этот факт очень важен для нас, поскольку необходимо как следует показать, что дифференциальные отношения – да, но даже до аксиоматизации все математики были согласны с тем, что дифференциальное исчисление как метод исследования бесконечного было условностью, о чистоте которой говорить невозможно, и Лейбниц первым сказал это, но даже в этот момент необходимо знать, каково здесь символическое значение. Аксиоматические отношения и отношения дифференциальные: спасибо, не надо. Здесь есть оппозиция.
Бесконечное совершенно изменило смысл и природу и в конце концов оказалось полностью изгнано.
Дифференциальные отношения типа DY : DX таковы, что мы получаем их из X и Y.
В то же время нельзя сказать, что DY не отличается от Y, это бесконечно малая величина; и нельзя сказать, что DX не отличается от X, это бесконечно малая величина по отношению к X.
Зато DY : DX есть нечто.
Но это – нечто совершенно иное, нежели Y : X.
Например, если Y : X обозначает кривую, то D : DX обозначает касательную.
И притом не какую угодно касательную.
Итак, я бы сказал, что дифференциальные отношения таковы, что они не обозначают ничего конкретного по отношению к тому, из чего они произведены, то есть по отношению к X и к Y, однако они обозначают некое иное конкретное и именно посредством этого обеспечивают переход к пределам. Они обеспечивают нечто конкретное, а именно некое Z.
Это можно с таким же успехом перефразировать: дифференциальное исчисление совершенно абстрагируется от детерминации типа a/b, но зато оно детерминирует некое с. Если аксиоматические отношения совершенно формальны со всех точек зрения, если они формальны по отношению к a и к b, то они не детерминируют c, каковое является конкретным. Стало быть, они совершенно не обеспечивают никакого перехода. Вот вам вся классическая оппозиция между генезисом и структурой. Аксиоматика – это поистине общая структура для некоего множества областей.
В прошлый раз мы обращались к моему второму большому заголовку, и этот второй большой заголовок был: СУБСТАНЦИЯ, МИР И СОВОЗМОЖНОСТЬ.
В первой части лекции мы пытались говорить о том, что Лейбниц называл бесконечным анализом. И ответ был таков: бесконечный анализ выполняет следующее условие: он возникает в той мере, в какой непрерывность и малые, или исчезающие, различия заменяют тождество.
И вот тогда, когда мы оперируем бесконечностью и исчезающими различиями, анализ становится в собственном смысле бесконечным. Затем я сталкиваюсь со вторым аспектом этого вопроса. Итак, существует бесконечный анализ и существует материя для бесконечного анализа, когда я оказываюсь в области, которая больше непосредственно не управляется тождественным, тождественностью, но в области, управляющейся непрерывностью и исчезающими различиями. И тогда можно прийти к относительно ясному ответу. Отсюда второй аспект проблемы: что такое совозможность? Что означает, что две вещи совозможны или не совозможны? И еще раз: Лейбниц говорит нам, что Адам-негрешник – это само по себе возможно, но это не совозможно с существующим миром. Итак, он притязает на то, что открыл отношения совозможности, и вы чувствуете, что это крепко связано с идеей бесконечного анализа.
Проблема в том, что несовозможное – это не то же, что противоречащее. Это сложно. Адам-негрешник не совозможен с существующим миром; здесь потребовался бы иной мир. Если мы это говорим, я вижу только три возможных решения, чтобы охарактеризовать понятие несовозможности.
Первое решение: мы скажем, что необходимо, чтобы так или иначе несовозможность имела в виду своего рода логическое противоречие. Необходимо, чтобы существовало противоречие между Адамом-негрешником и существующим миром. Одно лишь это противоречие можно выявлять до бесконечности; его можно назвать бесконечным противоречием. Если между кругом и квадратом существует конечное противоречие, то между Адамом-негрешником и миром существует противоречие бесконечное. Некоторые тексты Лейбница имеют в виду это направление. Но опять-таки, все, что мы прежде сказали, имело в виду, что совозможность и несовозможность поистине представляют собой оригинальные отношения, несводимые к тождеству и противоречию. Противоречивое тождество.
Более того, мы видели, что бесконечный анализ, как сказано в нашей первой части, не был анализом, обнаруживавшим тождественное по завершении бесконечного ряда процедур. Все наши результаты, полученные в прошлый раз, были основаны на том, что, отнюдь не обнаруживая тождественное по завершении ряда, у предела бесконечного ряда процедур, и тем самым не пользуясь бесконечным анализом, мы замещали точку зрения тождества точкой зрения непрерывности. Итак, перед нами другая область, нежели область «тождество – противоречие».
А вот другое решение, которое я упомяну очень быстро, так как здесь его подсказывают определенные тексты Лейбница: оно не по силам нашему разуму, так как наш разум конечен, и поэтому хотя совозможность и вводила какие-то оригинальные отношения, но мы не знали, каковы их корни.
Лейбниц вводит для нас новую область: существует не только возможное, необходимое и реальное. Существует еще совозможное и несовозможное. Лейбниц притязал на охват всей сферы бытия.
Вот гипотеза, которую я хотел бы выдвинуть: Лейбниц всегда спешит, он пишет всевозможным адресатам, повсюду; он не публикуется при жизни или публикует очень мало. Лейбниц обладает всей материей, всеми материалами для того, чтобы дать сравнительно точный ответ на эту проблему. Это неизбежно, потому что именно он эту проблему придумал, именно он нашел ее решение. И потом: что способствовало тому, что он осуществил здесь перегруппировку? Я полагаю, что ответ на эту проблему, и одновременно на проблему бесконечного анализа, даст весьма любопытная теория; Лейбниц, наверное, первым ввел ее в философию, и ее можно назвать теорией сингулярностей.
У Лейбница теория сингулярностей «разбросана» повсюду, она везде. Можно даже прочесть какие-нибудь страницы Лейбница, не заметив ее присутствия, – настолько она замаскирована.
Теория сингулярностей, на мой взгляд, имеет у Лейбница два полюса: необходимо сказать, что это математико-психологическая теория. А наша сегодняшняя проблема такова: что такое сингулярность на математическом уровне, и что здесь создал Лейбниц? Верно ли, что он создал первую великую теорию сингулярностей в математике? И второй вопрос: что такое Лейбницева теория психологических сингулярностей?
И последний вопрос: как математико-психологическая теория сингулярностей, та, что намечена у Лейбница, дает нам ответ на вопрос, что такое несовозможное, и, стало быть, на вопрос, что такое бесконечный анализ? Что такое это математическое понятие сингулярности? Почему оно пришло в упадок? В философии всегда такая ситуация: сингулярность указывает на некий момент, а потом ее отбрасывают. Это случай с теорией: у Лейбница было чуть больше, чем эскиз, а потом продолжения не было, шансов не было, она «не пошла». Интересна ли она для нас, чтобы возобновить ее?