Лекции по общей психологии — страница 139 из 174

ми». Хотя, конечно, чем меньше роль идеальных (умственных) операций в решении задачи и чем больше роль случайных практических проб, тем «глупее» выглядит задача.

Мы не дадим пока решений этих задач, а покажем попытки, наблюдавшиеся у испытуемых (рис. 38, 39).

UJ
|_|_
I I

Рис. 39

Можно еще сказать, что все приведенные примеры задач очень искусственны и не похожи на то, с чем мы сталкиваемся в жизни. Но, во-первых, от этого они не перестают быть задачами, а, во-вторых, вот отрывок из протокола опыта:

Протокол решения задачи по сборке велосипедного звонка. Испытуемый П.В. 13 лет.

1. Осматривает предложенные детали, последовательно переводя взор с одной на другую. Берет в руки основание корпуса,

2. Почти одновременно другой рукой берет ротор и надевает его на ось ротора вверх зубчаткой.

3. Производит функциональную пробу, поворачивая ротор вокруг оси. Ротор свободно поворачивается и, ударяя по оси рычага, производит слабый звон (!).

4. Надевает рычаг осевым отверстием на ось ротора

и, поворачивая его вокруг этой оси, производит функциональную пробу. Ротор при этом остается неподвижным, а кнопка цепляется за ось рычага.

5. Снимает рычаг и ротор. Переворачивает ротор и надевает его на ось ротора правильно. Надевает рычаг на ось ротора, повернув его на 180°. Производит функциональную пробу. Эффекта нет.

6. Надевает рычаг на ось рычага, повернув его верхней плоскостью вниз. Пытается ввести в зацепление зубцы ротора и рычага, но не может. Снимает и переворачивает ротор, который был надет правильно.

7. Снимает и устанавливает правильно ротор, затем — рычаг. (Облегченно вздыхает, улыбается). Теперь пружинку...

8. Надевает цилиндрическую часть пружины на ось ротора. Производит пробу поворотом рычага. Ожидаемого эффекта упругости нет. Зацепляет крючок пружины на ось рычага. Производит функциональную пробу. Эффекта упругого соединения нет.

9. Зацепил крючок пружины за отверстие в шайбе ротора, ищет, куда бы зацепить другой ее крючок. Находит сосок на корпусе ротора.

10. Отцепил пружину от ротора и установил ее правильно. Пробует «звонить» — получается. Довольно улыбаясь, навинчивает колпачок — «Вот и все!».

Решение задачи найдено самостоятельно и выполнено правильно за 9 минут.

Опыты эти проводились у нас в лаборатории B.C. Ивашкиным. Нетрудно заметить, что и здесь решение достигается путем проб, с помощью которых проверяются разные варианты решения и накопляется информация о свойствах, взаимном расположении и функциях деталей звонка.

Но это уже задача, очень близкая к жизни. Наладчики и ремонтники, техники и конструкторы повседневно сталкиваются с такого рода задачами в своей деятельности. Например, перед наладчиком встает такая задача. Резец дробит обрабатываемую поверхность детали. В чем дело? Решение достигается перебором возможных причин: вибрация детали в патроне; вибрация резца или резцедержателя; тугой и рывками ход суппорта; зазор в подшипниках шпинделя; зазор в направляющих суппорта и пр. Наладчик проверяет каждый из этих вариантов, сопоставляя с характером дефектов детали, а затем практически на станке.

Исследования психологов показали, что в решении такого рода задач наладчиками и ремонтниками наблюдаются те же две основных стратегии, что при угадывании числа. Цри этом упорядочение перебора производится обычно в соответствии с частотой проверяемых вариантов в практике, т.е. начинают с наиболее частых причин данного дефекта, затем переходят к более редким и т.д.

И ученый нередко решает свои задачи аналогичным путем, выясняя, как природа отвечает на его предположения.

Примерно так же решают задачи и играют начинающие и очень плохие шахматисты: «А что если я пойду пешкой? Он меня съест. А я ему сделаю шах.» и т.д.

В общем, значения данных, подходящие для решения задачи, в принципе могут быть обнаружены просто перебором различных свойств объектов и отношений, которые входят в условия задачи. Причем эти свойства и отношения могут выявляться как теоретически — анализом значений соответствующих данных задач, так и практически — выяснением этих значений через эксперимент.

Однако в любых случаях этот путь поиска в данных задачи значений, подходящих для ее решения, посредством перебора — плохой и не очень «умный» путь решения задач.

Дело в том, что у каждого объекта в принципе можно выявить бесчисленное множество свойств и отношений. Причем, в большинстве случаев «на лбу» у объекта не написано, какие из этих свойств и отношений имеют значение для решения данной задачи. В школе и в учебных задачах — это еще не так заметно, потому что там, как правило, задачи искусственные. В них специально выделены только те данные, которые имеют значения для задачи.

В жизни это не так. Уже в такой предельно упрощенной и формальной модели жизненной борьбы, как шахматы, попытки достижения цели игры путем перебора и проверки возможных решений сталкиваются с неисчислимостью возможных вариантов. Этот путь практически становится невозможен или заведомо неэффективен. Решение таких задач путем перебора оказывается не под силу даже электронным вычислительным машинам, совершающим миллионы операций в секунду. Тем более сказанное относится, по-видимому, к сложным содержательным задачам, которые ставят перед человеком жизнь, его трудовая и творческая деятельность.

Но человек-то справляется ведь с такими задачами. Правда, одним людям это удается лучше, другим — хуже. И не с любой задачей каждый справится. Но все-таки, худо-бедно, с каким-то средним уровнем познавательных и практических жизненных и трудовых задач все мы в общем справляемся.

Как же это удается человеку? Первый простейший ответ, который здесь приходит на ум: значит что-то есть у человека, чего нет у электронных машин. Дана ему, так сказать, некая способность решать задачу, сразу уз-ревая значение ее данных, без мучительных проб и перебора.

Именно такой ответ на рассматриваемую проблему предложили гештальт-психологи.

Способность сразу непосредственно усматривать в ус-ловиях задачи значения, необходимые для ее решения,

гештальтисты назвали инсайтом. По-другому инсайт можно определить как способность усматривать отношение и свойства данных, имеющих решающее значение для задачи.

Существует ли в действительности у человека такая способность? Похоже, что да! Простейшим примером может служить случай, который наблюдал психолог Вертгеймер.

В одном опыте пятилетнему ребенку он дал задачу: определить площадь параллелограмма (рис. 40).

Испытуемая знала, как определяется площадь прямоугольника (произведение длины двух смежных сторон). Она решала задачу следующим образом (Протокол опыта, рис. 41):

«Не знаю, как это сделать». После минуты молчания указывает на левую область, отмеченную штриховкой: «Это здесь не хорошо...». Затем, указывая на область справа: «И здесь не хорошо». Неуверенно говорит: «Я могла бы здесь исправить... но». Вдруг восклицает: «Можно взять ножницы? Что плохо там, как раз то, что надо, здесь. Подходит». Она берет ножницы, разрезает по вертикали и прикладывает левый край к правому.

Задача решена правильно. Если перевести это решение в геометрические и алгебраические понятия, то оно означает, что площадь параллелограмма равна произведению его основания на высоту. Но ребенок не знает еще этих понятий. Он решает задачу не посредством их, а прямым преобразованием формы фигуры, т.е. перестройкой зрительной структуры исходных данных.

Здесь же, по мнению Вертгеймера, заключался ответ на вопрос, как происходит, в чем заключается «усмотрение».

Оно заключается в такой перестройке (переструкту-рировании) данных, благодаря которой обнаруживаются их свойства и отношения, важные для решения задачи.

Само решение Вертгеймер понимал в том духе, как ребенок у него решил задачу с параллелограммом. Решение — это перестройка данных, благодаря которой на передний план выступают отношения, существенные для решения задачи. Эта перестройка достигается изменением подхода к данным, переменой терминов, в которых описывается и интерпретируется ситуация, сменой принципов, на которых основываются гипотезы о путях решения.

Так, например, задача: «Решите устно, чему равняется полторы трети от ста», оказывается трудна и для взрослых. Между тем, достаточно перестроить исходные данные, заметив, что полтора равно 3/2, как задача решается сразу:

. — = — ; 100- -L = 50. 3 2’ 2

Это — хороший пример результатов, к которым приводит простая смена терминов, описывающих ситуацию (3/2 вместо полтора), и изменение благодаря этому используемых значений.

Примером изменения подхода может служить мгновенное решение шестилетним ГаусСом следующей задачи: Найти сумму всех чисел натурального типа от 1 до 100. В то время как остальные школьники решали ее последовательным сложением (1+2=3; 3+3=6; 6+4=10; 10+5=15 и т.д.), Гаусс заметил общую закономерность: сумма симметричных чисел равна 101 (1 + 100=101; 2+99=101; 3+98= 101 и т.д.). Отсюда сразу вытекает решение: (100х101):2=5050.

А вот как решаются задачи, данные на рис. 36, 37 (см. рис. 42, 43).

В случае с точками следует отказаться от мысли, что все линии должны проходить в пространстве, ограниченном точками. В случае же со спичками надо отказаться от идеи, что полученные квадраты должны быть равны и находиться рядом (т.е. здесь надо освободиться от предвзятых требований, которые не содержатся в условиях, а являются «привнесенными» значениями слов «провести через» и «три квадрата»).

Нетрудно увидеть, что в обоих случаях для решения достаточно изменить принцип решения.

О том же говорит исследование мышления шахматистов. Оно показывает, что хорошие шахматисты видят не отдельные фигуры, а позицию в целом, как некоторое сочетание признаков, свойств и возможностей. И отсюда исходят в решении задачи.

Каждому человеку по собственному опыту знакомо переживание такого озарения, когда вдруг «все становится на свои места», делается «отчетливо видно», в чем суть задачи и как следует действовать. Понятие инсай-та и описывает это психологическое переживание.