Логика — страница 11 из 28

В романе И.С. Тургенева «Рудин» есть такой диалог Рудина и Пигасова:

«Прекрасно! — промолвил Рудин. — Стало быть, по-вашему, убеждений нет?

— Нет и не существует.

— Это ваше убеждение?

— Да.

— Как же вы говорите, что их нет? Вот вам уже одно, на первый случай.

Все в комнате улыбнулись и переглянулись».

Здесь Пигасов утверждает, что никаких убеждений не существует, и в то же время признает существование некоторого убеждения, впадая тем самым в очевидное противоречие.

3. Закон исключенного третьего: из двух противоречащих друг другу суждений одно обязательно истинно.

Это означает, что две противоречащие друг другу мысли не могут быть одновременно истинными (об этом говорит закон противоречия), но они не могут быть и одновременно ложными — одна из них необходимо истинна, другая — ложна. Иначе говоря, если перед вами два противоречащих друг другу суждения, то истина содержится в одном из них, не нужно искать ее где-то в другом месте, третьего не дано (tertium поп datur, как говорили латиняне). Например, число 7 четное, либо нечетное; Иванов женат, либо неженат — что-то из этого обязательно истинно. Один человек гордился выучкой своей собаки. Когда он отдавал ей команды: «Иди ко мне или не ходи!», «Ешь или не ешь!», она всегда выполняла их. Однако мы с вами теперь понимаем, что здесь нет повода для гордости — поведение собаки подчиняется закону исключенного третьего.

В пьесе Ж.-Б. Мольера «Мещанин во дворянстве» есть такой диалог:

«Г-н Журден: …А теперь я должен открыть вам секрет. Я влюблен в одну великосветскую даму, и мне бы хотелось, чтобы вы помогли мне написать ей записочку, которую я собираюсь уронить к ее ногам.

Учитель философии: Отлично.

Г-н Журден: Ведь правда, это будет учтиво?

Учитель философии: Конечно. Вы хотите написать ей стихи?

Г-н Журден: Нет-нет, только не стихи.

Учитель философии: Вы предпочитаете прозу?

Г-н Журден: Нет, я не хочу ни прозы, ни стихов. Учитель философии: Так нельзя: или то, или другое.

Г-н Журден: Почему?

Учитель философии: По той причине, сударь, что мы можем излагать свои мысли не иначе как прозой или стихами.

Г-н Журден: Не иначе как прозой или стихами?

Учитель философии: Не иначе, сударь. Все, что не проза, то стихи, а что не стихи, то проза».

Здесь герой пьесы попал в клещи закона исключенного третьего. Правда, этот закон не столь универсален, как два предыдущих. Он справедлив и применим только там, где возможно четкое решение и определенный ответ — да или нет. Увы, реальность часто далека от четкости и ясности. Предметы и явления изменяются, к часто трудно сказать, что это — все еще старый объект или уже что-то новое? Наши знания ограничены и не всегда позволяют дать определенный ответ. Существует ли во Вселенной разум, подобный человеческому? Будет ли в Москве идти дождь 22 июня 2050 года? Ответы на такого рода вопросы также подчиняются закону исключенного третьего, но мы не можем им воспользоваться при их выборе.

4. Закон достаточного основания: всякая истинная мысль должна иметь достаточное основание.

Этот закон означает, что, высказывая некоторое истинное суждение, мы должны обосновать его с помощью других суждений. Даже если мысль представляется очевидно истинной, следует указать основания, по которым мы ее принимаем. Данный закон говорит о том, что ничего нельзя принимать на веру, все нужно рационально обосновывать.

«Сегодня на улице мороз», — говорите вы. «Почему вы так считаете?», — спрашиваю я. Если вы ответите: «Просто я так думаю, я убежден в этом», это не заставит меня согласиться с вашим утверждением. Оно не обосновано. Но если вы скажете: «Сегодня на улице мороз, потому что ртуть в термометре, висящим за окном, опустилась до отметки –50 °C», то вы обосновали свое утверждение и я вынужден с ним согласиться. Истинная мысль соответствует действительности, т. е. реальное положение дел таково, как оно отображается в мысли, поэтому истинная мысль имеет основание в реальности. А это означает, что мы можем найти и указать логические основания нашей мысли. Ложь нельзя обосновать, поскольку она противоречит реальности и имеющемуся у нас истинному знанию. Но истина может и должна быть обоснована. Соблюдение закона достаточного основания делает наше мышление обоснованным и убедительным.

Конечно, не все может быть обосновано. Есть вещи, в которые мы просто верим, которые невозможно обосновать. Я считаю лучшими цветами хризантемы, а Мэрилин Монро представляется мне фальшивой и бездарной, однако мне трудно было бы привести обоснование этих моих убеждений. Логика с ее законами вовсе не стремится уничтожить всякую веру, мнение, предпочтение. Нет, она лишь требует отдавать себе ясный отчет, где речь идет о знании, которое должно быть обосновано, а где мы имеем дело с верой, которая не нуждается в обосновании. И смешивать эти две области не следует.

Глава 5Рассуждения и умозаключения

Что такое умозаключение. Дедукция и индукция

Ну вот мы и добрались до самого главного. Основная задача логики — анализ рассуждений, а рассуждения складываются из предложений и слов или, говоря иначе, из суждений и понятий. Поэтому знакомство с логикой мы и начали с рассмотрения тех простых элементов, из которых образуются сложные мыслительные конструкции. Теперь можно познакомиться с самими этими конструкциями.

Умозаключение есть форма мышления, в которой из одного или нескольких суждений на основании определенных правил получают новое суждение.

Наши рассуждения в повседневной жизни или в профессиональной сфере — это и есть умозаключения или цепи умозаключений. Умозаключение есть средство извлечения нового знания из уже имеющегося. То знание, которое мы получаем в результате непосредственного контакта с окружающей средой, очень невелико — оно ненамного превосходит знания животных. Но на этом небольшом фундаменте человек воздвиг колоссальное сооружение, включающее в себя знание о звездах и галактиках, о структуре атома и элементарных частицах, о законах, управляющих наследственностью, о древних цивилизациях, об исчезнувших языках и океанских глубинах. Все это знание получено благодаря умению человека строить умозаключения.

Иногда человеческий ум определяют как способность строить умозаключения, делать выводы. Может быть, ум состоит не только в этом, но, несомненно, способность строить умозаключения и извлекать выводы из имеющейся информации — одна из важнейших его сторон. Вы смотрите утром на градусник, висящий за окном, и видите, что ртуть в нем опустилась до –70 °C. Вот все, что у вас есть. Но отсюда вы делаете вывод, что на улице мороз. Вы еще не были на улице, не ощутили своей кожей укусов ветра, но уже знаете — там холодно. Откуда у вас это знание? Его вам дало умозаключение. Вы можете сделать еще один вывод: выходя на улицу, нужно одеться потеплее. Вы предвидите, какое воздействие окажет на вас мороз. Предвидение — это тоже умозаключение. Умный человек — тот, кто способен извлечь из имеющегося знания максимум новой информации, предвидеть ход событий и последствия своих действий. Шерлок Холмс и его друг доктор Ватсон часто ходят вместе, видят и слышат одно и то же, однако Холмс умеет извлечь из этого гораздо больше, чем Ватсон, поэтому и кажется нам умнее и проницательнее своего друга.

Всякое умозаключение состоит из двух частей: те суждения, из которых мы исходим, на которые мы опираемся в умозаключении, называются его посылками, новое суждение, извлекаемое нами из посылок, называется выводом. Все умозаключения разделяются на две большие группы — дедуктивные и индуктивные.

Дедуктивными называют такие умозаключения, в которых вывод из посылок следует с необходимостью, т. е. если посылки умозаключения истинны, то вывод обязательно будет истинным. Например, если мы знаем, что все гасконцы являются французами и д'Артаньян является гасконцем, то отсюда мы можем сделать вывод о том, что д'Артаньян является французом. И этот вывод будет безусловно истинным.

Об индуктивных умозаключениях мы позднее поговорим особо (в разделе «Индукция»), а сейчас познакомимся с некоторыми простыми и наиболее употребительными дедуктивными умозаключениями. Мы интуитивно используем их в повседневных рассуждениях, но часто ошибаемся, ибо не отдаем себе отчета в том, что это такое.

1) Вдоль стен квадратного бастиона комендант разместил 16 часовых, по 5 человек с каждой стороны, так, как показано на рисунке:

Через некоторое время пришел полковник, выразил недовольство расстановкой часовых и переставил их так, что с каждой стороны оказалось по 6 человек. Однако после этого появился генерал. Он также выразил недовольство и переставил часовых таким образом, что с каждой стороны их оказалось по 7.

Как расположил часовых полковник? Как их расставил генерал? Общее число часовых остается одним и тем же.

Непосредственные умозаключения

Непосредственными называют умозаключения из одной посылки, представляющей собой простое суждение.

Превращение состоит в том, что мы в нашу посылку вставляем два отрицания — одно перед связкой, а другое — перед предикатом, и так получаем новое суждение. Умозаключения принято изображать так: сначала пишется посылка (или посылки), под ней проводится черта, обозначающая слово «следовательно», а под чертой пишется вывод. Пусть посылкой у нас будет общеутвердительное суждение, тогда превращение выглядит так:

Все S есть P

Ни одно S не есть не-P

Например, суждение «Все металлы электропроводны» превращается в суждение «Ни один металл не является неэлектропроводным».

Если в качестве посылки взять общеотрицательное суждение, то превращение будет выглядеть так:

Ни одно S не есть P

Bce S есть не-P

Например, суждение «Ни один мошенник не является честным человеком» превращается в суждение «Все мошенники являются нечестными людьми». Когда здесь мы вставляем «не» перед связкой, то перед ней получаются два «не». Мы устраняем их, опираясь на принцип: двойное отрицание эквивалентно утверждению.