Тихий мир
На свалке богача можно найти больше ценного, чем во всем имуществе бедняка.
4. Могущество нормального распределения
Некоторые из законов природы ведут мир к Тихонии, другие — к Диконии.
Сэр Фрэнсис Гальтон (1822–1911), двоюродный брат Чарльза Дарвина, был настоящим ученым-универсалом. Он открыл метеорологическое явление, известное под названием антициклона; он первым предложил использовать для идентификации отпечатки пальцев; он первым составил карты некоторых районов Намибии. Он исследовал вопрос о том, продлевает ли молитва жизнь человека, и не нашел никаких подтверждений этого эффекта. Кроме того, он первым применил к психологии математические концепции расхождения средних значений и стандартного отклонения[41]. Ему потребовалось это потому, что, хотя он изучал мир Тихонии, его интересовало не столько среднее, сколько крайности. Например, он пытался выяснить, до какой степени необычайная талантливость может быть наследственной.
Гальтон исследовал детей в тех семьях, где родители по определенным меркам были «выше среднего», чтобы понять, как родительский уровень отразится на потомках. Поскольку в то время стандартизованные тесты на интеллектуальное развитие и другие методики оценки, применяемые в психологии, еще не были изобретены, он использовал качественное понятие превосходства. В его категорию «людей гораздо выше среднего» входили, в частности, судьи, ученые, ведущие политики и знаменитые медики. Поскольку в Викторианскую эпоху, в которую он жил, такие профессии были чисто мужскими, Гальтон изучал отцов и сыновей. Он выяснил, что сын выдающегося отца в среднем проявляет качества, превосходящие средний уровень, но, как правило, оказывается человеком менее выдающимся, чем его отец. Почему это так? Значит ли это, что мир стремится к посредственности? Возможно, в Тихонии, в которой явления в основном скапливаются вокруг среднего, именно так дело и обстоит. Но, как оказывается, даже в Тихонии не существует общего стремления к среднему.
Разумеется, у сыновей есть не только отцы, но и матери; может быть, именно они в ответе за то, что сыновья уступают отцам? Гальтон перенес свои исследования на случаи, в которых существует всего один родитель. Вместо изучения отцов и сыновей он начал анализировать потомство растений табака, которые размножаются бесполым путем. Он выбрал характеристику, которую было гораздо легче выразить численно, чем человеческое превосходство, — длину листьев. Гальтон обнаружил, что листья потомков длиннолистных растений табака тоже оказываются длиннее среднего, но, как правило, не такими длинными, как у родительских растений.
Регрессия к среднему
Итак, кажется, причина того, что у выдающихся отцов рождаются менее выдающиеся сыновья, не связана с половым размножением, но от этого результаты наблюдений не становятся менее загадочными. Гальтон назвал это явление «регрессией к среднему» — другими словами, возвратом к середине. Но назвать еще не значит объяснить. Почему население в целом не становится со временем более усредненным? А оно и в самом деле таким не становится. Гальтон исследовал несколько поколений растений табака и обнаружил, что в разных поколениях приблизительно одинакова не только средняя длина листа, но и стандартное отклонение: в каждом поколении присутствовала приблизительно одна и та же доля растений с необычайно длинными листьями. То есть растения табака, по-видимому, не склонны сползать к посредственности — и то же можно сказать и о людях; в каждую эпоху появляются свои выдающиеся личности.
Гальтон рассудил так: если дети необычайно одаренных людей не блещут удивительными талантами, то, вероятно, выдающимися оказываются дети людей среднего уровня или, возможно, уровня чуть выше среднего. Поэтому он решил повторить те же исследования, развернув их в другую сторону: на этот раз он хотел рассмотреть не детей, а родителей высокоталантливых людей. Разумеется, ни о какой причинно-следственной связи тут речи быть не может: если отец может влиять или не влиять на достижения своего сына, было бы абсурдом предполагать, что талант сына может каким-то образом передаваться в обратную сторону, отцу. Во всяком случае, Чарльз Дарвин, двоюродный брат Гальтона, уже покончил с концепцией улучшения в биологии. Эволюция организмов управляется случайной приспособленностью к окружающей среде, а не движением к какой-то «улучшенной» форме. В свете этого открытия идея исследования не следующего, а именно предыдущего поколения казалась уже не столь бессмысленной.
Поскольку человеческий интеллект — материя слишком сложная, Гальтон снова решил исследовать переменную, которую можно точно измерить. Он поставил свой обратный эксперимент на табачных листьях. Результаты, которые он получил, были вполне соизмеримы с результатами первого опыта: предки необычайно длиннолистных растений в основном имели листья более короткие, чем у их потомков, но тем не менее более длинные, чем в среднем. Поэтому Гальтон не удивился, когда, вернувшись к рассмотрению человека, обнаружил, что и качества отцов выдающихся людей в основном превышали средний уровень, но в общем и целом значительно в меньшей степени, чем качества их сыновей.
Явление регрессии к среднему проявляется и на другом конце спектра. Чрезвычайно низкий интеллектуальный уровень за несколько поколений хоть и медленно, но возвращается к среднему уровню; в то же время чрезвычайно низкие интеллектуальные способности встречаются у потомства родителей, находящихся на среднем уровне или лишь немного ниже его.
Таким образом, регрессия к среднему есть чисто математический феномен, наблюдаемый всякий раз, когда мы исследуем две отдельные переменные и определяем значения обеих для каждой особи в популяции. Не важно, о каких именно переменных и о какой именно популяции идет речь. Регрессия такого типа — свойство математической структуры, используемой для анализа популяции, а не конкретных свойств человеческих существ, табачных листьев или наследования.
Это положение можно проиллюстрировать на экстремальном примере. Предположим, я утверждаю, что я — великий волшебник и могу одним заклинанием превратить невезение в везение. Узрите же проявление моего могущества! Я предлагаю тысяче человек бросить по три игральных кости. В среднем около пяти из них выкинут неудачное сочетание — скажем, три единицы. Ясно, что это люди невезучие. Но я могу избавить их от невезения: я произношу нараспев свое заклинание и предлагаю им снова бросить кости. Вероятность того, что кто-нибудь из пятерых снова выкинет три единицы, чрезвычайно мала. Я провозглашаю их исцеленными! Однако на самом деле они попросту подпали под действие математического закона регрессии к среднему.
Этот пример можно считать предельным, потому что между результатами первого и второго бросков костей нет абсолютно никакой связи. Очевидно, что второй бросок никак не «наследует» результаты первого. Если бы эти результаты наследовались, причем наследовались точно, то всякий, выкинувший три единицы в первый раз, выкидывал бы их и дальше, какие бы волшебные слова я ни бормотал себе под нос.
Биологическое наследование в большинстве случаев находится где-то между этими двумя крайностями; характеристики передаются потомству до некоторой степени, но их воспроизведение даже близко не подходит к стопроцентному, даже в случае бесполого размножения. Регрессия к среднему присутствует всегда, но она никогда не проявляется так ярко, как в примере с невезучими игроками в кости. Чем сильнее и точнее наследование, тем слабее проявляется в потомстве эффект регрессии к среднему, в то время как при более слабом наследовании регрессия становится сильнее.
Математическое явление регрессии к среднему может даже не иметь связи с наследованием. На самом деле «регрессия» — это набор статистических методов для оценки значения одной переменной исходя из значений другой. При этом, в зависимости от того, оцениваем ли мы значение переменной А по значениям переменной В или значение переменной В по значениям переменной А, результаты получаются разными. Если, например, спросить, каков средний рост мужчин, весящих 90 кг, то ответ — около 180 см. Но если спросить, каков средний вес мужчин ростом 180 см, окажется, что он не достигает ни 90, ни даже 85 кг. И в этом, возможно, нет ничего особенно удивительного, потому что очень низкорослый человек вполне может весить за сотню килограммов, что уменьшает средний рост. Но иногда результаты могут быть весьма неочевидными. Например, если мы пытаемся предсказать, к какому году численность населения Земли достигнет десяти миллиардов человек, то две рассматриваемые переменные — это численность населения и время. Допустим, по всем имеющимся данным выходит, что наиболее вероятная дата, по достижении которой нас станет десять миллиардов, — 2050 год (оценка значения времени по значению численности населения). Но если попытаться узнать, какова будет численность населения Земли в 2050 году (то есть оценить численность по значению времени), то самый точный ответ, который можно получить на том же наборе данных, — 9,3 миллиарда. Причем эти несовпадающие ответы даже не противоречат друг другу.
Вознаграждение и наказание
Психологи часто изучают воздействие наград и наказаний. Некоторые исследования показывают, что эффективность работников обычно падает после получения награды и возрастает после наказания. Из этого многие делают вывод, что наказание производит позитивное воздействие, а вознаграждение — негативное. Однако такой вывод ошибочен, потому что он не учитывает регрессии к среднему, которая действует независимо от конкретной природы вознаграждения и наказания. Она является следствием способа, которым мы изучаем и анализируем данные. Если помнить об этом, правильный вывод может оказаться диаметрально противоположным.
Людей обычно вознаграждают, когда они работают лучше обычного, а наказывают, когда качество их работы снижается. Регрессия к среднему говорит нам, что без какого-либо вознаграждения или наказания за необычайно хорошей работой обычно следует более слабая, а после на редкость плохой работы ее качество с большой вероятностью повышается. Без учета регрессии к среднему нельзя делать выводы о воздействии наград и наказаний.
Нужно сравнивать степень улучшения и ухудшения без каких-либо внешних воздействий (наград или наказаний) с тем, что получается при их применении. Если ухудшение, следующее за необычайно хорошей работой, в среднем оказывается больше в отсутствие вознаграждения, чем при его наличии, значит, награда оказывает положительное воздействие. С другой стороны, даже если наказание в целом улучшает работу, оно все равно может мешать повышению ее качества, так как без него среднее улучшение могло быть еще более значительным.
Если бы мы не знали о регрессии к среднему, мы могли бы ошибочно решить, что вознаграждения вредны, а наказания полезны, потому что все данные исследований говорят именно об этом. На самом же деле картина гораздо сложнее. В некоторых ситуациях вознаграждение может приносить пользу, а в других — вред. То же верно и в отношении наказания. Суммарный эффект вознаграждения или наказания определяется не только ситуацией, но и личными качествами человека, о котором идет речь. Бывают даже такие люди, на которых эти меры не оказывают почти или вовсе никакого действия, — люди, которые по праву могут сказать о себе словами из стихотворения «Непокоренный» (Invictus) Уильяма Эрнеста Хенли:
Разнообразие и стабильность
Почему же, несмотря на эти осложнения, регрессия к среднему не делает всю популяцию однородной или по меньшей мере все более и более усредненной? Казалось бы, она должна производить такой эффект, но факты говорят об ином.
Длина табачных листьев, которые изучал Гальтон, на протяжении многих поколений соответствовала одному и тому же неизменному распределению. Более того, это распределение с высокой точностью совпадало с тем, которое всего за несколько десятилетий до исследований Гальтона описал Гаусс. Гальтон обнаружил, что если некая характеристика популяции распределена нормально, то из этого следует, чисто математически, что явление регрессии к среднему уравновешивается тем фактом, что среди потомства особей, превышающих средний уровень, встречаются особи выдающиеся. Как разнообразие, так и стабильность популяции сохраняются даже при наличии регрессии к среднему, потому что этого требуют математические характеристики распределения Гаусса.
Впоследствии математики выяснили, что связь между разнообразием и устойчивостью, которую обнаружил Гальтон, возникает только при приблизительно гауссовом распределении популяции[44]. Следовательно, нормальное распределение можно считать источником стабильности: именно оно позволяет популяции оставаться в целом неизменной от поколения к поколению, несмотря на регрессию к среднему.
Разумеется, некоторые изменения популяции со временем все же происходят. Например, в прошлом веке человечество стало существенно выше ростом. Это отчасти вызвано развитием медицины, а отчасти — резким сокращением неполноценного питания. Тем не менее уже ясно, что в последние несколько десятилетий это увеличение остановилось, по меньшей мере в развитых странах. Рост будущих поколений, вероятно, будет приблизительно таким же, как рост нашего поколения — как по среднему значению, так и по стандартному отклонению. Установился новый стабильный ростовой режим. Распределение Гаусса сдвинулось, но осталось самим собой.
Закон регрессии к среднему действует как в Тихонии, так и в Диконии, но, поскольку стабильность популяции может быть гарантирована только распределениями, близкими к гауссову, стабильность встречается только в Тихонии. Поэтому не следует пренебрегать традиционной тихонской наукой, хотя она и не способна адекватно описывать (или моделировать) некоторые явления. В глубине души все мы жаждем стабильности, и некоторым популяциям удается ее достигнуть. Тараканы и крысы остаются неизменными на протяжении миллионов лет, сохраняя такие характеристики, как соотношение численности крупных и мелких или светлых и темных особей. Законы Тихонии весьма неплохо моделируют некоторые явления реального мира.
Наличие стабильности в Тихонии не означает, что своего рода стабильности не может существовать и в Диконии. Гераклит Эфесский говорил (или говорят, что он говорил), что ничто не постоянно, кроме перемен. Этот афоризм, которому уже две с половиной тысячи лет, отлично описывает те формы стабильности, которые существуют в Диконии — мире, в котором стабильность, присущая популяции тараканов, просто непредставима. Но, хотя Дикония дика, в ней тоже действуют природные законы. Некоторые из законов природы направляют мир в сторону Тихонии, другие — в сторону Диконии. Пока что сосредоточим свое внимание на Тихонии. О Диконии поговорим потом.
Доска Гальтона
Фрэнсис Гальтон изобрел устройство, известное теперь под названием «доски Гальтона» (илл. 6); его называют также «фасолевой машиной» (bean machine). Оно наглядно демонстрирует хорошо известный закон вероятности. Шарики (или, например, фасолины) бросают в воронку сверху, предполагая, что падающий шарик при ударе о шпенек с равной вероятностью отскакивает или вправо, или влево. Шарики заполняют пазы в соответствии с так называемым биномиальным распределением. По мере падения шариков кривая, которую они образуют, все точнее и точнее соответствует распределению Гаусса. В 1920 году Дьёрдь Пойа опубликовал статью с математическим доказательством этого принципа; он назвал свою теорему центральной предельной теоремой. Слово «центральная» отражает роль этой теоремы в теории вероятностей. Как мы вскоре увидим, она также проливает свет на одну из важных уловок природы, помогающих продвижению мира в сторону Тихонии.
Легко понять, почему в центральные пазы попадает гораздо больше шариков, чем в пазы на левом и правом краях. Чтобы попасть в середину, шарику нужно отскочить три раза влево и три раза вправо. Он может сделать это несколькими способами — например, один раз влево, затем два раза вправо, затем два раза влево и еще один раз вправо (ЛППЛЛП). Также возможен вариант (ЛЛПППЛ) и так далее. Всего существует двадцать таких последовательностей. Но попасть в крайний левый или крайний правый паз может только шарик, отскакивающий каждый раз в одну и ту же сторону, шесть раз влево или шесть раз вправо, и такая траектория существует всего в одном варианте. Поэтому следует ожидать, что после падения большого количества шариков в центральном пазу окажется примерно в 20 раз больше шариков, чем в крайнем левом или крайнем правом.
Илл. 6. Доска Гальтона
(Рис. Веры Мерё)
Труднее увидеть, почему биномиальная «кривая», образованная шариками, должна приближаться к распределению Гаусса. Почему не к распределению Коши или к какому-нибудь другому распределению, о котором я еще не упоминал? Причина кроется в сути центральной предельной теоремы[45]. В отличие от пуль Фиби, которые подчиняются распределению Коши, шарики на доске Гальтона послушно следуют распределению Гаусса без значительных отклонений. Если построить по-настоящему большую доску, скажем с сотней рядов и столбцов, и запускать на нее каждую секунду по тысяче шариков, то можно ожидать, что до попадания шарика в паз номер 1 или номер 100 пройдут миллиарды миллиардов лет. Фиби гораздо раньше выпустила бы пулю, которая попала бы в точку на аналогичном расстоянии от середины стены.
Особенно изящна биологическая интерпретация центральной предельной теоремы[46]. Предположим, что некоторая биологическая характеристика (например, рост) определяется несколькими мелкими компонентами, каждый из которых может принимать одно из нескольких значений, и мы можем моделировать эту характеристику в виде суммы индивидуальных вкладов таких компонентов. В этом случае центральная предельная теорема утверждает, что распределение нашей характеристики по крупной популяции будет соответствовать распределению Гаусса. Именно это утверждение и иллюстрирует доска Гальтона. Представим себе, что существуют шестьдесят генов, влияющих на рост, и каждый из них может быть двух видов — высоким или низким. Чем больше у особи высоких генов, тем больше будет ее рост. Если допустить, что низкий ген соответствует отскоку влево, а высокий — отскоку вправо, то у максимально высокой особи все шестьдесят генов должны быть высокими, что эквивалентно в математическом выражении шестидесяти последовательным отскокам шарика вправо. Аналогичным образом максимально низкая особь должна получить все шестьдесят генов низкими, что эквивалентно шестидесяти последовательным отскокам шарика влево. У большинства представителей популяции будет смесь высоких и низких генов, и соотношение их количеств будет таким же, как соотношение количеств шариков в пазах доски Гальтона.
Разумеется, на рост могут влиять не только генетические компоненты, но и факторы окружающей среды. На рост нашего тела влияют несколько генов, и все они сравнительно слабые. Кроме того, действуют внешние факторы — например, питание в детстве. В упрощенной модели дело обстоит похожим образом и с уровнем интеллектуального развития, хотя для него выявлено еще меньше генетических факторов, а факторы воздействия окружающей среды тоже очень разнообразны — от уровня питания ребенка до того, как ему читают и как с ним разговаривают. Никому не достаются только те факторы, что вносят свой вклад в более высокое интеллектуальное развитие, но те, кому их достается больше, предположительно получают более высокий уровень интеллекта.
Этот результат тоже в точности соответствует тому, что моделирует доска Гальтона. Разумеется, биологические явления гораздо сложнее, чем эта простая машина. События, влияющие на то, в каком месте в конце концов окажется шарик, — отскоки влево и отскоки вправо — независимы друг от друга. Шарик отскакивает на некотором уровне влево или вправо независимо от того, влево или вправо он отскочил на предыдущем. Эта независимость и позволяет машине приблизиться к распределению Гаусса.
В биологических системах такая независимость встречается редко. Каждый из факторов, влияющих на определенную характеристику, будь то ген, воздействие среды или что-то еще, обычно не бывает независимым от других факторов. Более того, разные факторы обычно влияют на получающуюся характеристику в разной степени. Поэтому на самом деле доска Гальтона моделирует мир живых существ лишь в очень ограниченных пределах.
Стабильность как следствие множественности компонентов
Нельзя сказать, чтобы математики приняли все это как данность. Многие типы центральной предельной теоремы были доказаны, причем было продемонстрировано, что разные варианты биномиального распределения также стремятся к распределению Гаусса. Например, было показано, что компоненты, вносящие свой вклад в некоторую характеристику, могут быть неодинаковой силы. На некоторых уровнях доски Гальтона они могут отскакивать вправо или влево не на один столбец, а на два или три. Такой сценарий труднее осуществить физически, но математический результат остается неизменным: в конце концов фасолины, попавшие в пазы, располагаются в соответствии с распределением Гаусса. Кроме того, события на том или ином уровне не обязательно должны быть независимы от другого уровня. Например, на поведение шарика на каком-то уровне до некоторой степени может влиять то, как он отскочил от шпенька уровнем раньше. До сих пор появляются все новые варианты центральной предельной теоремы. Суммарную картину, полученную на основе нескольких вариантов центральной предельной теоремы, можно приблизительно резюмировать следующим образом:
Если некая характеристика определяется несколькими слабыми компонентами («слабыми» в том смысле, что ни один из них не сильнее всех других)
и между этими компонентами нет сильной взаимозависимости (то есть нет таких нескольких компонентов, которые определяют значения всех остальных),
то такая характеристика должна быть распределена по всей популяции в соответствии с распределением Гаусса.
Эту картину точно иллюстрирует представленное на илл. 7 распределение значений коэффициента интеллектуального развития (IQ). Оно очень похоже на гауссиану, которую мы видели раньше, за исключением небольшой «шишечки» в районе 70, единственного нарушения плавной картины. Эта «шишечка» соответствует популяции больных синдромом Дауна.
Илл. 7. Распределение значений IQ
(График Йожефа Бенце, на основе данных Kun and Szakács, 1997)
Синдром Дауна — это генетическое заболевание, вызванное наличием лишней копии 21-й хромосомы. Воздействие лишней хромосомы на уровень интеллектуального развития более или менее подавляет эффект всех остальных факторов — не настолько, чтобы человек полностью утрачивал все интеллектуальные способности, но у большинства взрослых с синдромом Дауна IQ бывает между 50 и 70, и все другие факторы, определяющие интеллектуальное развитие, влияют на эту цифру очень слабо. В случае интеллектуального развития другие столь же подавляющие компоненты появляются настолько редко, что их воздействие не отражается на кривой распределения (синдром Дауна встречается приблизительно у одного из тысячи новорожденных).
Рост распределяется примерно так же. Поскольку существует несколько генетических компонентов, которые неизбежно вызывают необычайно низкий или высокий рост, на кривой распределения роста, по форме весьма близкой к гауссиане, есть несколько пиков. В то же время с массой тела дело обстоит иначе. В следующей главе мы узнаем, почему это так.
Математика центральной предельной теоремы образует фундамент, на котором природа может строить стабильные конструкции — например, популяции живых организмов. Возможно, пока природа экспериментировала по всей Вселенной, пробуя то одно, то другое, она создавала структуры как стабильные, так и нестабильные. По определению, выжили именно первые. Судя по тому, что мы знаем о физике, которая формировала космос после Большого взрыва, и о законах биологической эволюции, действенный способ достижения стабильности заключается в создании такой системы, в которой определенная характеристика создается сочетанием нескольких более или менее независимых компонентов сравнимой силы. Именно такое сочетание гарантирует, что данная характеристика будет распределена по приблизительно нормальному закону, что, в свою очередь, гарантирует ее стабильность из поколения в поколение (если не происходит резких изменений условий окружающей среды).
Однако несмотря на все усилия природы — а может быть, просто в соответствии с природой вещей, — иногда ей не удается создать характеристику через взаимодействие множества слабых компонентов. Иногда, как в случае синдрома Дауна, возникает компонент, подавляющий все остальные. Но даже в случае появления такого компонента природа применяет уловку — формирует каждую важную характеристику из суммы нескольких мелких, более или менее независимых компонентов, — и этого, как правило, бывает достаточно для достижения стабильности.
Я не знаю, что на самом деле является руководящим принципом природы — стремление к стабильности или просто сборка всего на свете из множества мелких компонентов, порождающая стабильность в качестве побочного продукта самого принципа строительства. Как бы то ни было, именно из-за центральной предельной теоремы столь многое в природе действует в соответствии с законами Тихонии и повсюду не царит свойственная Диконии нестабильность. Как мы помним из разговора о распределении Коши, положение точки, в которой выстрел Фиби попадает в стену, определяется одним-единственным компонентом, а именно тем угловым положением относительно стены, в котором Фиби оказывается после разворота. Если она повернута почти параллельно стене, малейшее изменение угла дает огромное расхождение в результатах. Поэтому нас не должно удивлять, что результат этот получается диконским — нестабильным в традиционном смысле этого слова. В Тихонии, где явления порождаются взаимодействием многочисленных мелких компонентов, мы ожидаем стабильности, с четко определенными понятиями среднего, или математического ожидания, и стандартного отклонения от среднего. Но в Диконии нормальна только ненормальность. Возможно все, что угодно, и у событий нет стандартного отклонения.
В этом и заключается фундаментальное различие между этими двумя мирами. То, что можно описать при помощи распределения Гаусса, составляющего самую основу Тихонии, часто определяется несколькими слабыми компонентами и потому остается стабильным до тех пор, пока не возникнет какого-нибудь подавляющего компонента. Сегодня это положение хорошо известно математикам, но его нужно было открыть, а для этого над этой задачей пришлось потрудиться весьма многим выдающимся умам, от Абрахама де Муавра, открывшего в 1733 году ранний вариант центральной предельной теоремы, до Гаусса, Гальтона, Пойи и нынешних исследователей, которые постоянно продолжают открывать все новые варианты центральной предельной теоремы и применять их к природным и общественным явлениям.
Абсолютная симметрия из абсолютной асимметрии
Математики обобщили центральную предельную теорему и в другом направлении. Из-за симметричности доски Гальтона — на каждом уровне каждый шарик с равной вероятностью может отскочить вправо или влево — это математическое устройство трудно использовать в качестве модели в биологии. В мире живых существ действует естественный отбор, содействующий некоторым из генов — тем, которые обеспечивают бо́льшую вероятность выживания, — больше, чем другим. Чтобы ввести в нашу модель естественный отбор, можно, например, сказать, что отскок вправо вносит в выживание больший вклад, чем отскок влево.
Математики исследовали, что происходит при внесении в доску такой асимметрии. Предположим, что на каждом уровне шарик падает на маленький рычажок, который может наклониться влево или вправо, причем все такие рычажки вращаются влево — то есть против часовой стрелки, — как миниатюрные пропеллеры. В результате вероятность отскока шарика влево всегда будет выше, чем вероятность отскока вправо. Если пропеллеры вращаются очень быстро, шарик почти всегда будет отскакивать влево, а если они вращаются медленнее, то и вероятность отскока влево будет меньше.
На такой «небеспристрастной» доске распределение шариков по пазам уже не будет симметричным. Слева их окажется больше. Тем не менее, если доска достаточно высока и широка, распределение шариков снова будет приближаться к гауссову, но его пик окажется смещен на некоторое расстояние влево. Чем быстрее вращаются пропеллеры, тем левее оказывается пик. Центральная предельная теорема продолжает действовать и на доске со смещением.
Математика асимметричной доски демонстрирует еще одно интересное свойство нормального распределения. Гауссиана абсолютно симметрична, но ее симметрия может быть образована асимметричными компонентами. В Тихонии абсолютная асимметрия может порождать — и часто порождает — абсолютную симметрию.
Теперь я хочу забежать вперед и показать вам фрактал — он изображен на илл. 8. Мы будем изучать эти странные объекты в части III. Фрактал этот совершенно не симметричен, но создает стойкое ощущение регулярности. Я поместил здесь его изображение, потому что оно иллюстрирует фундаментальное различие между Тихонией и Диконией. В Тихонии даже полная асимметрия может порождать абсолютную симметрию. В Диконии же даже принцип абсолютной симметрии (которую называют масштабной инвариантностью или самоподобием) может приводить к асимметрии. Фигура, представленная на илл. 8, является результатом действия чрезвычайно глубокого вида регулярности, гораздо более сложного, чем обычная симметрия.
Илл. 8. Фрактал