Сколько раз я жалел, что у моих очков нет телефонного номера!
На илл. 14 показан обменный курс фунта стерлингов к доллару за разные временные интервалы в течение 2012/13 бюджетного года. При первом же взгляде на графики бросается в глаза, что я не отметил на оси абсцисс даты и время, а на оси ординат не указал масштаб. Можно ли сказать, на каком графике показана история курса за пять минут, а на каком — за час, за сутки и за неделю? Чтобы не лишать вас удовольствия, я не стану приводить здесь ответы на эти вопросы; их можно найти в конце книги[83]. Не огорчайтесь, любезный читатель, если вам не удается понять, какому временному отрезку соответствует какой график. Этого не могут сказать даже самые прославленные гуру фондового рынка.
Самоподобие
Тот факт, что графики состояния финансового рынка выглядят одинаково на всех временных масштабах, привлек внимание Бенуа Мандельброта, с которым мы уже встречались в главе 6. Он захотел узнать, в чем тут дело — есть ли что-то, чего не замечают эксперты, или же различить эти графики действительно невозможно.
Илл. 14. Обменный курс фунта стерлингов к доллару. Которая из кривых построена на пятиминутном масштабе? А на часовом? На суточном? На недельном?
(Графики Йожефа Бенце)
Если бы на четырех графиках, приведенных на илл. 14, было показано соотношение между британским фунтом и британским же пенсом — или американским долларом и американским центом, — тогда именно по той причине, что эти соотношения никогда не изменяются, графики выглядели бы как горизонтальные прямые линии, и невозможность определения временной шкалы никого бы не удивила. Но обменные курсы, изображенные на графиках, подвержены сильным колебаниям, и разумно было бы ожидать, что у этих колебаний имеется своего рода временной ритм, такой, что изменения в течение минуты и изменения в течение недели сильно отличаются друг от друга. Но на деле они оказываются пугающе похожими.
Для разработки модели такого графика Мандельброт хотел найти математический объект, масштабно-инвариантный не только на практике — так сказать, на вид, — но и в теории. Один такой объект, очевидно, существует — это прямая линия. Но есть ли другие, нетривиальные (как сказал бы математик) примеры таких объектов? Если их не существует, то значит, в кривых поведения фондового рынка таится нечто еще не открытое, что когда-нибудь позволит нам определять временной масштаб рыночного графика. Такое знание привело бы нас к ценным новым открытиям в природе финансовых рынков.
Если мы ищем не строгого математического самоподобия, а просто хотим найти объекты, выглядящие одинаково в разных масштабах, то природа предлагает нам несколько примеров. Например, у папоротника крупные листья, каждый из которых содержит множество более мелких листьев, кажущихся идентичными, а каждый из них содержит множество еще меньших листьев, кажущихся идентичными, и так далее (илл. 15). В какой-то момент это самоподобие нарушается: отдельные клетки папоротника выглядят как обычные растительные клетки, а не как листья папоротника.
Илл. 15.Самоподобный папоротник
Илл. 16. Мозаика VII века из базилики Санта-Мария-ин-Козмедин в Риме
(Фото Франческо де Комите; воспроизводится по лицензии https://creativecommons.org/licenses/by/2.0/legalcode)
Илл. 17. Четвертая итерация треугольника Серпинского
(Чертеж Йожефа Бенце)
Можно найти такие примеры и в искусстве. На илл. 16 показана мозаика из базилики Санта-Мария-ин-Козмедин, римской церкви VII века. Исходя из той же идеи треугольников, заключенных внутри треугольников, польский математик Вацлав Серпинский открыл истинно самоподобный математический объект, который можно получить за бесконечное число итераций, последовательно вырезая из треугольников треугольные фрагменты. На илл. 17 показана четвертая итерация этого процесса.
Другие истинно самоподобные математические построения были открыты еще в конце XIX века, но до Мандельброта их в основном считали всего лишь занятными диковинами. Мандельброт назвал такие объекты «фракталами», и мы вскоре поймем, что он имел в виду.
Фракталы
В конце 1970-х годов Мандельброт работал в Исследовательском центре имени Томаса Джона Уотсона, входившем в состав компании IBM, и, следовательно, имел доступ к высокопроизводительным (по тем временам) средствам компьютерной графики. В 1980 году он написал программу для отображения объекта, представленного на илл. 18, который стал известен под названием множества Мандельброта. Это множество, а точнее его граница, определяется при помощи сравнительно простой формулы, и кривые, образующие эту границу, оказываются масштабно-инвариантными. В каком бы месте мы ни увеличили изображение, оно выглядит так же, как исходная фигура. Определить, с каким увеличением мы рассматриваем это множество, невозможно. В интернете можно найти очень эффектные анимации глубокого «погружения» в множество Мандельброта, в которых исходная форма снова и снова возникает по мере укрупнения масштаба, подтверждая самоподобие этого объекта[84].
Илл. 18. Множество Мандельброта (левое верхнее изображение) и последовательное (по часовой стрелке) увеличение центра фигуры. Каждое следующее увеличение производится с изменением масштаба в несколько миллиардов раз
Нечего и говорить, что границы множества Мандельброта — это не обычная кривая, подобная дуге окружности или даже какой-нибудь фантастически изогнутой линии. На самом деле это вообще не одномерная кривая. Однако она и не двумерна, потому что не покрывает никакого целого сегмента двумерной плоскости. Она простирается подобно клочковатому облаку. Если такой кривой потребуется присвоить размерность, та должна быть неким числом, находящимся между единицей и двойкой. Такая «дробная» (от англ. fraction — «дробь») размерность и побудила Мандельброта назвать множества этого типа фракталами[85].
В интернете можно найти множество изображений этих замечательных объектов, а также программ для их создания, и я горячо рекомендую читателю их исследовать. Хотя генераторам фракталов требуется всего несколько параметров, они создают необычайное богатство форм. Одно из представлений фрактала мы видели на илл. 8, а еще два показаны на илл. 19. Они созданы самым простым из возможных способов, с использованием только лишь фрактального генератора неспециализированного графического редактора Photoshop. При помощи генераторов фракталов можно обогащать изображения, делая их еще более зрелищными и выявляя скрытые в них регулярности и симметрии.
Илл. 19. Фракталы, сгенерированные в программе Photoshop
(Автор изображения — Вера Мерё)
Масштабная инвариантность как закон природы
Мандельброт обнаружил, что графики поведения финансовых рынков имеют многие из свойств фрактальных кривых. Это обстоятельство позволило ответить на вопрос о возможности определения масштаба графиков финансового рынка. Если они фрактальны и, следовательно, самоподобны во всех масштабах, это означает, что специалисты по финансам не упускали из виду какой-нибудь тонкости, которая позволила бы им определять масштаб таких графиков. Если графики действительно самоподобны, для этого попросту не существует даже теоретической возможности. По-видимому, финансовые рынки масштабно-инвариантны по самой своей природе.
Параметры фрактала определяют ход его развития при генерировании — так же как начальное состояние двойного маятника определяет его траекторию. В случае маятника мы видели, что малые изменения параметров порождают гигантские различия в траектории. Происходит ли то же самое с фракталами? Насколько чувствительно их развитие к начальным условиям? Как мы увидим дальше, ответ на этот вопрос — «чрезвычайно чувствительно».
Хотя исходно Мандельброт разработал концепцию фракталов для моделирования поведения финансовых рынков, вскоре он начал подозревать, что фракталы могут быть в природе не исключением, а правилом. Например, береговые линии образуют зигзаги произвольной формы, весьма напоминающие кривую средних значений индекса Доу — Джонса за прошлую неделю; иногда от них отходят острова, похожие на клочковатые облака. На расстоянии их изрезанные контуры кажутся четко определенными, но чем больше мы к ним приближаемся, тем виднее становятся все более многочисленные замысловатые извивы, и в конце концов исчезает почти всякая возможность сказать, находится ли та или иная конкретная точка — камешек или песчинка — в море или на берегу. На самом деле береговые линии так же фрактальны, как границы множества Мандельброта.
Первые мысли Мандельброта о фракталах были изложены в его статье 1967 года под названием «Какова длина побережья Великобритании? Статистическое самоподобие и фрактальная размерность» (How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension)[86]. В ней он описывает так называемый «парадокс береговой линии» — тот факт, что результат измерения длины береговой линии становится тем больше, чем более короткая линейка используется для измерений, потому что такая линейка позволяет измерить большее количество изгибов и зигзагов. Разумеется, к сходному выводу можно прийти, даже измеряя длину простой дуги окружности, но там увеличение измеренной длины с уменьшением длины линейки имеет фиксированный предел, который мы и называем длиной дуги. То же справедливо и в отношении других обычных кривых, но не фрактальных линий, длина которых расходится до бесконечности. В той мере, в какой береговая линия подобна фракталу, она содержит, по существу, бесконечное количество отрезков, доступных измерению, — и больших, и малых. Мандельброт показал, что ни точно определить береговую линию Великобритании, ни точно измерить ее длину невозможно. У нее нет длины — так же, как у распределения Коши, что показала нам наша подруга Фиби, нет стандартного отклонения. Таким образом, фракталы, как и распределение Коши, приводят нас в Диконию.
Это явление настолько вдохновило Мандельброта, что он начал коллекционировать примеры фрактальных явлений в природе. При этом он обнаружил: стоит понять, что именно ты ищешь, и ты встречаешь это практически повсюду. Как мы уже видели, листья папоротника похожи на фракталы; то же можно сказать о разветвленных системах кротовых туннелей. Подобны фракталам и горные вершины, и снежинки, и облака, и границы норвежских фьордов. Даже человеческий мозг можно считать сложным фракталом. По итогам всех этих наблюдений в 1983 году Мандельброт опубликовал книгу под названием «Фрактальная геометрия природы» (The Fractal Geometry of Nature).
Фракталы заинтересовали и психологов. Они провели исследования, чтобы выяснить, какого рода изображения (пейзажи и абстрактные картины) кажутся нам красивыми, и один из неизменных результатов этих исследований сводился к тому, что нас привлекают изображения, подобные фракталам[87]. Возможно, это связано вот с чем: мы настолько окружены фракталами, что эти изображения кажутся нам более знакомыми, чем фигуры более традиционной геометрии. Удивительно, что психологам понадобилось столько времени на открытие этого факта — ведь фракталы буквально на каждом шагу!
Изображения фрактального типа — подобные упомянутому выше «треугольнику Серпинского» — мозаике VII века — существуют в искусстве издавна. Можно еще упомянуть «пламенеющие» арки и ажурные переплетения готической архитектуры, в которых, как и во многих произведениях современной живописи, в некоторой мере проявляется самоподобие. Однако за годы, прошедшие с тех пор, как программы для генерирования фракталов стали широко доступны, появился целый новый жанр изобразительного искусства, в котором фракталы используются осознанно. На илл. 20 изображена «оболочка Мандельброта» (Mandelbulb), созданная Дэниелом Уайтом и Полом Ниландером на основе трехмерного варианта множества Мандельброта.
Илл. 20. Оболочка Мандельброта
(Авторы изображения — Дэниел Уайт и Пол Ниландер)
Фракталы активно используются современными художниками, работающими в области компьютерной графики. Каждый холм и каждое облако в вашей любимой видеоигре построены алгоритмом генерирования фракталов, создающим реалистичные изображения. Самоподобие встречается даже в литературе: последний, связывающий, сонет (магистрал) в классическом венке состоит из первых стихов предыдущих четырнадцати сонетов. В музыке существует фуга, в которой самоподобие выражается в повторяющемся возникновении одной и той же темы. В ней же есть и масштабная инвариантность, проявляющаяся в увеличении и уменьшении, когда тема воспроизводится с большей (увеличенной) или с меньшей (уменьшенной) длительностью нот, в сжатии (стретто), когда голос, имитирующий тему, вступает еще до того, как завершился предыдущий, и в инверсии, когда тема повторяется в зеркальном отражении.
Самоподобие может приносить огромную пользу инженерам, потому что одна и та же конструкция может быть использована для изготовления механизма, выполняющего некую функцию на всех возможных масштабах. Однако тут сразу же возникают трудности, например, в связи с тем, что при увеличении размеров абсолютно одинаковых трехмерных объектов отношение их объема к площади поверхности не остается неизменным. Это может вызвать нарушения структурной или термодинамической устойчивости. С другой стороны, природа ничего не конструирует. Она просто лепит наугад, и выживает то, что выживает.
Если бы мы открыли закон, из которого следовало бы, что все на свете стремится к достижению максимальной масштабной инвариантности, это было бы большим шагом к пониманию того, как в природном мире возникают структуры невероятной сложности. Из этого вытекало бы, что вещи становятся масштабно-инвариантными не из-за некоего конкретного конструктивного принципа, определенного именно их собственной историей, но в соответствии со всеобщим законом. Если бы такой, ранее не известный, всеобщий руководящий принцип был найден, честь его открытия можно было бы приписать Мандельброту. Но если такой принцип и существует, мы знаем очень мало о механизме его работы и еще менее способны определить область его применимости.
Масштабно-инвариантный хаос
Хаос и масштабная инвариантность неразлучны. Единственное очевидное и тривиальное исключение из этого правила составляет отрезок прямой. Все остальные масштабно-инвариантные объекты обладают всеми тремя характеристиками хаоса, сформулированными в предыдущей главе:
1. Система должна быть определена малым числом переменных. Например, множество Мандельброта определяется очень простым уравнением с одной-единственной комплексной переменной, и даже оболочка Мандельброта, изображенная на илл. 20, определяется всего тремя переменными. Если мы используем элемент случайности для увеличения богатства формы, это добавляет всего одну дополнительную переменную. Более сложные фракталы определяются бо́льшим числом уравнений, но это число обычно находится в промежутке от пяти до десяти. Однако даже фракталы, созданные с использованием гораздо большего количества переменных, могут проявлять хаотическое поведение, как мы видели на примере человеческого мозга: он создается из тысяч генов и проявляет хаотические черты.
2. Система должна быть чрезвычайно чувствительна к малым изменениям начального состояния. В случае фракталов начальное состояние выражается уравнениями, определяющими фрактал. И действительно, малейшие изменения параметров этих уравнений изменяют вид фрактала самым радикальным образом.
3. В какой-то момент своего развития хаотическая система должна оказываться сколь угодно близко ко всем состояниям, которых она теоретически может достичь. В той области плоскости или трехмерного (или многомерного) пространства, в которой фрактал определен, он плотен в том же смысле, в котором плотно облако: он не заполняет все точки, как твердое тело, но приближается ко всем точкам своей области определения. Любые точки этой области, не принадлежащие фракталу, сколь угодно близки к точкам, которые ему принадлежат.
Свойственна фракталам и непредсказуемость хаоса. Если взять случайную точку на плоскости и спросить, принадлежит ли она данному фракталу, не существует универсального способа найти ответ на этот вопрос. В это, может быть, трудно поверить, так как фрактал определяется несколькими уравнениями и теоретически мы должны быть способны определить, принадлежит ли та или иная точка множеству их решений. Но Гёдель говорит: если окажется, что нам это не под силу, ничего удивительного в этом не будет. В случае двойного маятника мы можем проследить его траекторию исходя из начального состояния, и если эта траектория пройдет через нашу случайно выбранную точку, то мы сможем заключить, что точка действительно лежит на траектории. Но если маятник не пройдет через эту точку, мы никак не можем предсказать, пройдет ли он через нее когда-нибудь в дальнейшем.
То же справедливо и в отношении фракталов: единственный способ определить, принадлежит ли та или иная точка данному фракталу — это продолжать решение соответствующих уравнений на компьютере. Если компьютер нарисует именно ту точку, которую мы выбрали, то можно быть уверенным, что она принадлежит фракталу. Но до того, как это случится, мы не будем иметь никакого понятия, случится ли это когда-нибудь. Следовательно, если точка все же не принадлежит фракталу, мы никогда об этом не узнаем, как бы долго ни работал наш компьютер.
Хотя все фракталы хаотичны, не всякое хаотическое явление имеет фрактальную структуру. Например, траектория двойного маятника хаотична, но фракталом не является. Однако верно, что фракталы — это наиболее часто встречающиеся проявления хаоса в природе. Иными словами, хаос обычно проявляется в природе в масштабно-инвариантном виде. Разумеется, в этом не было бы ничего удивительного, если бы оказалось, что Мандельброт на самом деле выявил некий доселе неизвестный принцип, справедливый в очень широком диапазоне условий. Масштабная инвариантность может быть тем способом, который дает природе возможность экономичного построения объектов с чрезвычайно богатой структурой. Также может быть, что масштабная инвариантность — это реальное проявление свойственной природе нетерпимости к пустоте. За исключением тривиального случая отрезка прямой, масштабная инвариантность автоматически порождает хаос, а хаос, как мы видели в предыдущей главе, не терпит пустоты — в том смысле, что он плотно заполняет всю свою область определения. На нашем нынешнем уровне знаний все это — лишь умозрительные догадки, но мы точно знаем одно: масштабная инвариантность и сопутствующий ей хаос встречаются в природе повсеместно.
Безмасштабные сети
Хотя самоподобие интересовало Мандельброта в первую очередь как геометрическое явление, масштабная инвариантность оказалась концепцией гораздо более общего толка. Одним из наиболее плодотворных ее приложений стало открытие безмасштабных сетей, которые прославил во всем мире американский физик венгерского происхождения Альберт Ласло Барабаши в своем бестселлере «Связанное» (Linked).
С точки зрения математиков и физиков, сеть есть структура, состоящая из набора узлов (вершин), некоторые — но не обязательно все — из которых соединены между собою ребрами. Сети могут служить представлением самых разных взаимоотношений. Например, чтобы проиллюстрировать личные отношения в некой группе людей, можно изобразить каждого человека в виде вершины, а наличие ребра, соединяющего две вершины, будет показывать, что эти люди знакомы друг с другом. Нейроны мозга также образуют сеть; некоторые из них соединены друг с другом, другие — нет. Еще одну сеть — так называемый веб-граф — образуют интернет-страницы. Две страницы соединены ребром, если одна из них содержит ссылку на другую. Также можно построить сеть научно-исследовательских публикаций, в которой связи между узлами будут изображать цитирование одной работы в другой. Авиационные маршруты тоже образуют сеть; ее узлы — города, и между двумя городами существует ребро, если эти города соединены беспересадочными рейсами. Важное открытие, сделанное Барабаши и группой его коллег, состояло в том, что сети, встречающиеся в природе, как и социальные сети, по большей части масштабно-инвариантны, так же как по большей части масштабно-инвариантны природные хаотические системы.
Некоторые сети обладают определенной асимметрией. Например, если в сети научных статей в статье В цитируется статья А, то, по всей вероятности, в статье А не цитируется статья В (поскольку статью В, в общем случае, должны были опубликовать после статьи А). Следовательно, ребро, соединяющее узлы А и В, имеет направление. Такие сети называют ориентированными, а их ребра и узлы могут быть входящими или исходящими. Аналогичным образом в сети авиационных маршрутов может существовать прямой рейс из Алтуны в Поттсвиль, а вот прямого рейса из Поттсвиля в Алтуну может и не быть: тогда в сети есть ребро, идущее из вершины Алтуны к вершине Поттсвиля, но нет ребра, идущего в противоположном направлении.
Масштабная инвариантность сетей похожа на масштабную инвариантность геометрических фигур: любая часть сети выглядит более или менее похожей на другую, подсети выглядят как целая сеть, а подподсети — как те подсети, в которых они находятся, так что сказать, в каком масштабе мы рассматриваем сеть, невозможно. При рассмотрении сетей в другом масштабе, в котором узлами становятся не отдельные люди, а города и страны, ее внешний вид изменяется незначительно.
Безмасштабные сети обладают интересными свойствами, которые не обнаруживаются в большинстве других сетей. Например, безмасштабные сети отличаются весьма высокой плотностью в следующем смысле: до каждой пары узлов можно добраться по сравнительно короткому маршруту. Скажем, по имеющимся оценкам считается, что любых двух человек на Земле можно соединить цепочкой из шести или менее знакомых. Интернет также образует очень большую сеть, а именно сеть ориентированную; на каждых двух человек на Земле в нем приходится приблизительно по одной странице. Также и в этом случае почти до любой страницы можно добраться с любой другой страницы не более чем за двадцать переходов по ссылкам. Разумеется, могут существовать как маленькие группы людей, не имеющих знакомых вне своей группы, так и страницы, на которые не ведут никакие входящие ссылки. Хотя до таких «островков» действительно невозможно добраться извне, сказанное выше относительно связности справедливо для подавляющего большинства страниц в интернете.
Другая особенность безмасштабных сетей состоит в том, что по сравнению с сетями «нормальными» они содержат относительно большое число узлов, количество входящих и исходящих соединений в них намного превышает среднее, а большинство их узлов имеют сравнительно мало соединений. Именно через такие «концентраторы», наделенные множеством связей, в безмасштабной сети передается бо́льшая часть информации. Если мы хотим распространить какую-либо информацию по безмасштабной сети, прежде всего следует найти один из «концентраторов». В социальных науках их обычно называют «лидерами мнений», или «неформальными лидерами». У некоторых приматов эту роль часто играют старые самки, в обязанности которых входит так называемый «груминг» (вычесывание паразитов) всей группы; переходя от одного члена группы к другому, они распространяют информацию. В человеческих обществах похожую функцию может выполнять почтальон или парикмахер[88].
Особенно интересный случай безмасштабной сети представляет собой одна из возможных моделей того, как мы ищем потерянные предметы. Как правило, мы тщательно обыскиваем какой-нибудь определенный участок, перемещаясь при этом очень мелкими шажками. Но через некоторое время мы внезапно уходим из этой точки и начинаем искать совершенно в другом месте, вокруг которого также начинаем передвигаться мелкими шагами. Если нарисовать сеть, узлами которой будут точки, около которых мы ищем, а ребрами — наши переходы между этими точками, мы получим безмасштабную сеть, которую называют «полетом Леви» по имени ее первооткрывателя, французского математика Поля Леви[89].
Предположим, что мы ищем очки или сотовый телефон (хотя на сотовый по меньшей мере можно позвонить, если под рукой есть другой телефон. Сколько раз я жалел, что у моих очков нет телефонного номера!). Если позвонить невозможно, мы ищем телефон тем самым образом, который описал Леви. Безмасштабные полеты Леви применяют также пчелы и альбатросы, олени и ласточки, когда занимаются поисками пищи и, возможно, материалов для строительства гнезда.
Поль Леви описал этот поисковый алгоритм еще в 1930-х годах и доказал, что при некоторых условиях он соответствует оптимальному методу поиска. Дело в том, что эта стратегия минимизирует вероятность повторного осмотра уже пройденных участков и в то же время максимизирует число осматриваемых участков. Таким образом Леви доказал, что масштабная инвариантность может обладать теоретическими и даже практическими преимуществами. Он, правда, не называл это свойство масштабной инвариантностью или самоподобием, потому что в то время эти концепции еще не были открыты. Он просто выявил существование чрезвычайно особого параметра, который к тому же играет фундаментальную роль в науке Диконии.
Мыслительный процесс Леви весьма впечатлил Джона фон Неймана. Мандельброт пишет: «Джон фон Нейман, бывший позднее моим учителем, говорил мне: „Думаю, что теперь я понимаю, как работают все другие математики, но Леви похож на гостя с чужой планеты. Кажется, у него свои, глубоко личные способы постигать истину, и мне от этого становится неуютно“». Что же касается Леви, Мандельброт добавляет: «Впоследствии, когда я рассказал Леви, как развил его идеи и применил их к экономике, он был ошеломлен и, кажется, раздосадован. Он считал, что „настоящие“ математики просто не должны заниматься столь прозаическими вещами, как изучение доходов или цен на хлопок»[90].
Элементы, породившие Диконию
Леви проложил путь в царство безмасштабных сетей, решив чисто математическую задачу, но прошло еще целых полвека, прежде чем эта концепция попала в мир естественно-научных исследований. Одна из интересных особенностей безмасштабных сетей состоит в том, что нам довольно хорошо понятен механизм их самопроизвольного возникновения. Альберт Ласло Барабаши и Река Альберт разработали для иллюстрации этого принципа чрезвычайно простую и изящную математическую модель и проверили ее на самых разных сетях реального мира, в том числе на сети голливудских актеров, связанных совместной работой в одних и тех же фильмах, на некоторых частях Всемирной паутины и на сети электроснабжения Соединенных Штатов. В каждом из этих случаев сети следовали предсказаниям их модели с весьма высокой точностью[91].
Представим себе сеть, которая увеличивается шаг за шагом, причем вновь прибывшие предпочтительно соединяются с членами сети, присоединившимися к ней раньше всех; чем раньше человек примкнул к сети, тем больше вероятность, что следующий новичок окажется связан именно с ним. Это означает, что те, кто вошел в сеть раньше, обладают непрестанно растущим преимуществом в отношении числа связей по сравнению с теми, кто присоединился к сети позднее. Барабаши и Альберт доказали, что при некоторых условиях этого простого принципа бывает достаточно для образования безмасштабной сети. Тот же результат получается, когда некоторые элементы сети по какой бы то ни было причине оказываются предпочтительнее других. (К слову, ситуация становится более интересной и более сложной, если учитывать возможность существования сильных и слабых связей, — но здесь я не стану углубляться в этот вопрос.) Этот эффект, благодаря которому предпочтительное присоединение приводит к формированию безмасштабной сети, называется эффектом Матфея по библейскому стиху, гласящему: «…ибо всякому имеющему дастся и приумножится, а у неимеющего отнимется и то, что имеет…» (Мф. 25: 29)[92]. В переводе на более понятный язык это значит, что богатые становятся еще богаче, а бедные — еще беднее.
Помимо эффекта Матфея были обнаружены три других явления, которые могут вносить свой вклад в возникновение безмасштабных сетей[93]. Первое из них — усложнение, которое обычно способствует появлению в сети модульной структуры, что, в свою очередь, может привести к масштабной инвариантности. Второе — процесс накопления, например знаний или капиталов. Третье — интенсивная конкуренция, пример которой можно найти в биологической эволюции, которой случалось приводить к появлению некоторых организмов с причудливыми свойствами. Хотя строгого доказательства, описывающего то, как именно любые из этих составляющих могут привести к возникновению масштабной инвариантности, пока нет, существуют некоторые логические рассуждения в пользу такого влияния, а также интуитивные представления о том, что усложнение, накопление и жесткая конкуренция вносят свой вклад в создание безмасштабных сетей как в природе, так и в человеческом обществе.
Масштабная инвариантность означает хаос: малейшие изменения начальных условий порождают огромные различия в развитии масштабно-инвариантной сети. Именно поэтому мы встречаем чрезвычайно богатое разнообразие природных и социальных сетей, хотя принципы, лежащие в их основе, сравнительно просты.
Сила слабых связей
Еще в 1960-х годах американский социолог Марк Грановеттер исследовал, как люди занимаются поиском работы. Проанализировав сотни интервью и анкет, он обнаружил, к своему удивлению, что в большинстве своем люди находят работу не по газетным объявлениям и не через близких знакомых. Почти в 80 % всех случаев ключом к успеху оказывается человек, с которым соискатель знаком лишь поверхностно. В 1973 году Грановеттер опубликовал свою знаменитую ныне работу, озаглавив ее «Сила слабых связей» (The Strength of Weak Ties)[94]. Эта статья стала крупным «концентратором» в сети публикаций по социологии: ее цитируют около тридцати тысяч раз.
Барабаши выяснил, что это явление не ограничивается областью поисков работы. Более того, оно подчеркивает одно из самых загадочных свойств безмасштабных сетей: почти все многочисленные связи узловой вершины — это связи слабые. Как это ни парадоксально, именно эти слабые связи предотвращают распад сети.
В безмасштабных сетях сильные связи создают островки. Члены такого островка проводят бо́льшую часть времени с другими вершинами того же островка и могут быть почти полностью изолированы от остальной сети. Островки соединены с другими частями сети слабыми связями. В узле, содержащем множество островков, соединенных слабыми связями, именно эти слабые связи удерживают всю структуру в целости, не позволяя сети распасться. Поэтому, как чаще всего наблюдал Грановеттер, найти работу помогают человеку вовсе не близкие друзья. Близкие друзья в основном знакомы с теми же людьми, которых знает и сам соискатель, и в основном советуют поговорить с теми, к кому он уже обращался. Если бы у нас были только сильные связи, мы застряли бы в очень ограниченном мире.
Венгерский биохимик Петер Чермели в течение многих лет изучал белки стресса. Речь идет о белках, образующих одну из самых древних защитных систем организма. Когда какой-нибудь белок сворачивается неправильным образом, белки стресса разворачивают его, предоставляя ему еще одну возможность свернуться правильно. Поскольку белки могут принимать разные трехмерные формы, иногда они сворачиваются таким образом, что не могут выполнять свои функции. Чермели пишет: «Без белков стресса клетка была бы переполнена мусором, белками искаженной формы, вцепившимися друг в друга, как будто настает конец света». Главный вопрос, на который ответил Чермели, был таким: как белкам стресса удается оказаться там, где они нужны? Чермели продолжает: «Первые пять лет я обрушивал [на белки стресса] все то, к чему может прибегнуть биохимик. Я их изолировал, разрезал на части, поджаривал и вымачивал в кислоте, щелочи и радиоактивной жиже. Мне потребовалось пять лет, чтобы понять, что белки стресса не похожи на другие белки… Белки стресса не только скручиваются, но и прилипают, совсем не сильно, но одинаково ко всему»[95].
Как это ни удивительно, ключ к пониманию принципов работы белков стресса нашелся не в биохимии, а в теории сетей. Белки стресса действуют как узлы безмасштабной сети. Эти белки обладают множеством слабых связей. Прочие белки, занятые выполнением своих конкретных физиологических функций, сильно связаны с несколькими другими, с которыми они и выполняют эти физиологические функции, и у них нет ни времени, ни сил на поддержание слабых отношений. Белки стресса подобны старым самкам в обществах приматов, которые вычесывают всю стаю, тем самым поддерживая ее связное единство.
Безмасштабные сети обычно стабилизируются слабыми связями, и стабильность такого типа характерна только для этих сетей. Именно она позволяет им оставаться в какой-то мере постоянными в течение долгого времени, даже если сеть разрастается настолько, что любая вершина оказывается непосредственно связана лишь с пренебрежимо малым участком всей сети. Именно благодаря слабым связям мегаполис с многомиллионным населением может функционировать как согласованное целое. Слабые связи позволяют сотне миллиардов нейронов человеческого мозга формировать логичные мысли. И вполне может быть, что именно слабые связи лежат в основе стремления к масштабной инвариантности как фундаментального принципа природы.