Логика для всех. От пиратов до мудрецов

Если вы любите головоломки и задачки на логику, то книга Инессы Раскиной «Логика для всех. От пиратов до мудрецов» — это то, что вам нужно! В этой книге собраны увлекательные задания, которые помогут развить логическое мышление и научиться решать нестандартные задачи.

Четырнадцатая книжка серии «Школьные математические кружки» продолжает цикл логических задач от И. В. Раскиной и Д. Э. Шноля. Здесь представлены разработки десяти занятий математического кружка с примерами разнообразных заданий, которые сделают процесс обучения интересным и увлекательным.

Читайте книгу «Логика для всех. От пиратов до мудрецов» бесплатно онлайн на сайте библиотеки Ридания!

Читать полный текст книги «Логика для всех. От пиратов до мудрецов» бесплатно вы можете в нашей онлайн читалке. Просмотрите оглавление, чтобы перейти сразу к желаемой части книги. Скачать fb2 файл книги (1,5 MB) можно по этой ссылке, если вы предпочитаете свою читалку.

«Логика для всех. От пиратов до мудрецов» — читать онлайн бесплатно

– Когда я беру слово, оно означает то, что я хочу, не больше и не меньше, – сказал Шалтай презрительно.

Лъюис Кэрролл. «Алиса в Зазеркалье»

Этот выпуск является продолжением книги «Логические задачи», изданной ранее в серии «Школьные математические кружки». Он состоит из десяти занятий, различных по цели, форме и уровню сложности.

Первые пять, а также восьмое занятие представляют собой элементарное введение в формальную логику. Тематика стандартна: высказывания (в том числе общие и частные) и их отрицания, закон исключенного третьего, союзы «и» и «или», следствие и равносильность. Уровень сложности и стиль изложения первых пяти и большей части восьмого занятий рассчитан в первую очередь на учеников 5–7 классов. Почти во все занятия (кроме второго) включены задачи, связанные с другими разделами математики. Особое внимание уделяется умению отличать решенную задачу от нерешенной, в частности, применимости примера и контрпримера. Активно используются графические иллюстрации. Отдельные задачи, требующие от пятиклассников дополнительных знаний (например, признаков делимости), могут быть ими пропущены или заменены аналогичными из раздела дополнительных задач.

Читать дальше