[92].
Интересно и поучительно сравнить особенности наследственности и эволюции в случае CRISPR-системы с соответствующими характеристиками эукариотической РНК-интерференции (RNAi) и, в частности, малых интерферирующих (si) РНК и PIWI-взаимодействующих (pi) РНК, то есть с защитными системами эукариот, в общих чертах функционально аналогичными CRISPR. Для начала вспомним примечательный и довольно загадочный факт: белковый аппарат эукариотической РНК-интерференции не гомологичен Cas-белкам; белковые компоненты этой сложной эукариотической системы были собраны из прокариотических доменов, которые первоначально были вовлечены в исполнение других функций (см. гл. 7; Shabalina and Koonin, 2008). Очевидное отсутствие ортологов для любого из Cas-белков в клетках эукариот позволяет предположить, что эта система каким-то образом исключена из эукариотического мира отбором, хотя лежащее в основе селективное давление представляется смутно. Единственным намеком может служить общая причина утраты оперонов у эукариот, которую мы обсуждали в главе 7: опероны исчезают под действием рекомбинационного храповика, и гены, которые требуют особенно тесной координации экспрессии или же вредны вне контекста действия оперона, устраняются путем очищающего отбора[93].
В отличие от CRISPR-Cas, системы РНК-интерференции не используют механизм Ламарка напрямую. Тем не менее они явно демонстрируют характерные «ламарковские» черты. Система siРНК (отдельный вид РНКи) «обучается» внешним агентом (вирусом) путем генерации малых интерферирующих РНК, комплементарных вирусным генам (Kim et al., 2009). Этот процесс, безусловно, имеет сходство с CRISPR-механизмом, но, кроме того, напоминает, по крайней мере метафорически, «изменение повадок» по Ламарку. Более того, система имеет некоторый уровень памяти, поскольку во многих организмах миРНК амплифицируются, и устойчивость к соответствующему вирусу может сохраняться в течение нескольких поколений (Ding, 2010). Подобная стабильность миРНК служит одним из проявлений получающего все более широкое признание РНК-опосредованного наследования, которое иногда называют парамутацией (Hollick, 2010). Ключевое отличие от CRISPR состоит в том, что (насколько известно в настоящее время) миРНК не записываются в геном, так что здесь имеет место лишь эпигенетическая наследственность ламарковского типа, но не полноценная генетическая наследственность.
Однако даже это различие размывается в случае piРНК, которые являются производными транспозонов. Это наиболее распространенные малые РНК в животном мире, образующие быстро растущие геномные кластеры, обеспечивающие защиту от мобильных элементов в зародышевой плазме (Bourc’his and Voinnet, 2010). В случае этих малых РНК, как и в ситуации с CRISPR, фрагменты генома мобильного элемента интегрируются в геном хозяина, где они быстро размножаются, видимо, под давлением отбора на эффективную защиту (Assis and Kondrashov, 2009). Такая система, похоже, отвечает всем критериям наследования приобретенных признаков и ламарковского режима эволюции. Здесь особенно примечательно, что изолированная зародышевая плазма, будучи важнейшим изобретением многоклеточных эукариот, которые, по-видимому, блокируют некоторые формы (квази)ламарковского наследования, такие как горизонтальный перенос генов (см. обсуждение далее в этой главе), сама выработала в процессе эволюции особую версию механизма ламарковского типа.
Целый ряд примечательных данных по растениям и животным, полученных совсем недавно, указывает на то, что эукариоты используют обратную транскрипцию для интеграции ДНК-копий генома РНК вирусов в хромосомы и могут затем использовать эти встроенные последовательности для производства миРНК или белков, обеспечивающих устойчивость к соответствующим вирусам (Feschotte, 2010; Horie et al., 2010; Koonin, 2010c). Эти механизмы еще предстоит исследовать более тщательно, но по идее они должны быть аналогичны CRISPR и, следовательно, являются ламарковскими.
Одним из главных открытий сравнительной геномики является демонстрация широкого распространения и высокой частоты горизонтального переноса генов среди прокариот, а также значительного уровня горизонтального переноса у одноклеточных эукариот (см. гл. 5 и 7). Прокариоты с легкостью усваивают ДНК из окружающей среды с помощью фагов и плазмид, служащих векторами, или же без векторов, через механизм трансформации, при участии мембранных насосов, специализирующихся на захвате ДНК.
Поглощенная ДНК часто интегрируется в хромосомы прокариот и может быть зафиксирована в популяции, даже если перенесенный генетический материал дает получателю совсем небольшое селективное преимущество или будучи вовсе нейтральным. Явление горизонтального переноса обладает очевидными ламарковскими признаками: ДНК черпаются из окружающей среды, и, естественно, вероятность приобретения генов, которые находятся в изобилии в данной среде, гораздо выше, чем вероятность захвата редкого гена. Второй компонент схемы Ламарка, повышение приспособленности за счет приобретенного признака, не реализуется во всех случаях фиксации горизонтального переноса, однако является значимым и достаточно обычным явлением.
Пожалуй, самый простой и привычный пример — эволюция резистентности к антибиотикам (Martinez, 2008; Wright, 2007). Когда чувствительная бактерия попадает в среду, где присутствуют антибиотики, единственный шанс для пришельца выжить заключен в приобретении гена устойчивости путем горизонтального переноса, как правило через плазмиды. Этот распространенный (и исключительно важный в практическом плане) феномен представляет собой ярко выраженный пример наследования по Ламарку. В самом деле, признак — в этом случае активность перенесенного гена, способствующего резистентности к антибиотикам, — приобретается под непосредственным влиянием окружающей среды и очевидным образом оказывается выгодным — часто необходимым в данных конкретных условиях.
Похожая картина наблюдается для генов фотосинтеза в океане: гены бактериородопсина, главного белка светозависимой биоэнергетики (протон-движущей силы) в галофильных археях, а также в многочисленных бактериях, как и гены фотосистем первого и второго типа, участвующие в хлорофиллзависимом фотосинтезе, судя по всему, распространяются горизонтальным переносом с высокой скоростью, часто посредством бактериофагов, выступающих в качестве переносчиков (Alperovitch-Lavy et al., 2011; Falkowski et al., 2008; Sullivan et al., 2006). Эти гены наделяют организм обладателя серьезным селективным преимуществом, так что они фиксируются с высокой частотой.
В целом любой случай горизонтального переноса, при котором приобретенный ген дает реципиенту преимущество с точки зрения воспроизводства в данной среде (которая благоприятствует передаче такого гена), по-видимому, удовлетворяет ламарковским критериям. Исследования по сравнительной геномике показывают, что горизонтальный перенос служит основным способом адаптации бактерий к окружающей среде путем расширения метаболических и сигнальных сетей, куда интегрируются новые горизонтально приобретенные гены и, таким образом, добавляют новые свойства в уже существующие схемы (Maslov et al., 2009). Количественно горизонтальный перенос, с его ламарковской компонентой, оказывается у прокариот гораздо более важным средством адаптации, нежели дупликация генов (Pal et al., 2005).
Интересным указанием на то, что горизонтальный перенос может быть адаптивным феноменом, служит уже упоминавшееся открытие агентов переноса генов (АПГ). Как отмечалось в главе 5, АПГ являются производными дефектных бактериофагов, которые заключают в себе, по-видимому, случайные фрагменты генома хозяина и переносят их внутри бактериальных и архейных популяций. Интереснейшие наблюдения переноса генов в морских бактериальных сообществах показывают, что АПГ довольно неразборчивы по отношению к бактериям, которых они инфицируют, и обеспечивают очень высокую интенсивность ГПГ (McDaniel et al., 2010). Свойства АПГ еще предстоит детально исследовать, но существует реальная возможность, что эти агенты представляют собой специально предназначенные для горизонтального переноса средства доставки, которые эволюционировали под селективным давлением, направленным на усиление обмена генами. Если это так, напрашивается вывод, что сам ГПГ выступает частично как адаптивный процесс (см. также обсуждение гипотезы оптимизации переноса в гл. 5). Подводя итог сказанному, мы, видимо, не можем избежать вывода, что некоторые из наиболее важных путей эволюции генома — по меньшей мере у прокариот — являются (квази)ламарковскими.
Дарвин подчеркивал эволюционную важность случайных, ненаправленных вариаций, в то время как ламарковская эволюция основана на направленной изменчивости, специфически вызываемой экологическими факторами. Реальная эволюция отвергает это противопоставление. Самой яркой иллюстрацией может служить комплекс разнообразных явлений, которые в совокупности известны как стресс-индуцированный мутагенез, одним из важных аспектов которого является активизация мобильных элементов. Явление такого типа впервые было описано Барбарой Макклинток, продемонстрировавшей (в серии классических экспериментов, которые в конечном итоге принесли ей Нобелевскую премию) активизацию «перескакивания генов» в растениях в условиях стресса, а также важность этой стресс-индуцированной мобильности отдельных «управляющих элементов» для возникновения резистентных фенотипов (McClintock, 1984).
Позднее столь же известный и спорный эксперимент Джона Кэрнса (John Cairns) с сотрудниками по восстановлению мутаций в Lac-опероне, индуцированному лактозой, впечатляющим образом вывел ламарковский механизм эволюции на видное место (Brisson, 2003; Cairns et al., 1988; Rosenberg, 2001). Кэрнс и его коллеги обнаружили заметное усиление реверсии мутаций рамки считывания в Lac-опероне в присутствии лактозы и смело предположили, что за наблюдаемым эффектом стоит классический ламарковский механизм эволюции — иначе говоря, лактоза непосредственно и направленно вызвала мутации в Lac-опероне.