Логика случая. О природе и происхождении биологической эволюции — страница 79 из 105

лены и другие функции, такие, например, как синтез предшественников РНК. Наш эволюционный сценарий включает в себя следующие этапы (см. рис. 12-4).

Рис. 12-4. Концептуальный сценарий происхождения трансляционной системы посредством экзаптации и субфункционализации. Шаги модели, описанные в тексте, обозначены цифрами в скобках.

1. Рибозим R является частью ансамбля эгоистичных кооператоров в ячейке. Этот рибозим достаточно сложен для катализа реакции (XY), скорость которой влияет на приспособленность ансамбля, и имеет определенное число позиций, способных к эволюции, так что возможна эволюция новых функций. Две или более абиогенных аминокислоты, присутствующие в ячейке, связываются с R. Избирательное связывание аминокислот обеспечивается активным центром, случайно присутствующим в R. Участие стереохимического протокода (кодон/антикодон) на данном этапе возможно, но не повлияет на ситуацию существенным образом. Присоединенные аминокислоты стимулирует реакцию XY, катализируемую R. In vitro были получены рибозимы, сильно стимулируемые пептидами что дает экспериментальное обоснование этому принципиальному шагу (Robertson et al., 2004). В контексте эгоистично-кооперативной эволюции (см. гл. 11) естественный отбор будет отбирать аминокислоты, стимулируемые R, приводя к постепенному совершенствованию пространственного выравнивания аминокислот на R и отбору последовательности и структуры оптимальных для связывания аминокислот.

2. R приобретает дополнительную активность лигазы пептидной связи, формируя олигопептид P из соседних аминокислот, связанных с R. Отбором in vitro были получены рибозимы с высокой активностью пептидной лигазы, хотя и с низкой избирательностью. По-видимому, рибозимы этого класса способны синтезировать только короткие пептиды, состоящие из, самое большее, четырех или пяти аминокислот. Селекционным преимуществом этого новоприобретения будет повышение стабильности реактивного комплекса, приводящее к дальнейшему усилению реакции XY. Естественно задаться вопросом, откуда на этом шаге берется энергия, необходимая для формирования пептидной связи. В экспериментально описанных рибозимных пептидных лигазах один из субстратов является активированным производным (аминоацил-аденилат), так что используется энергия эфирной связи. Это напоминает современную трансляцию, в которой АРСазы используют аминоацил-аденилаты для аминоацилирования специфической тРНК, а высокоэнергетичная эфирная связь аминоацил-тРНК используется для транспептидации. Гипотетические древнейшие пептид-лигазы, возможно, действовали таким же образом, используя аминоацил-аденилаты или другие активированные производные аминокислот, произведенные другими рибозимами. И действительно, были получены рибозимы, катализирующие каждую из этих реакций, от аденилирования аминокислот до синтеза пептидов (см. табл. 12-1). Эти рибозимы, несомненно, зависят от энергии фосфодиэфирной связи в АТФ или иной формы энергии.

3. Спонтанная диссоциация или распад R высвобождает пептид P обратно в ячейку. Если P обладает неспецифической способностью стимулировать и (или) стабилизировать рибозимы, он может быть захвачен другим рибозимом E, катализирующим другую реакцию (UV). Интересным примером мог бы быть пептид, содержащий пару отрицательно заряженных аминокислот и образующий комплекс с двухвалентным катионом, аналогично разнообразным, неродственным современным ферментам метаболизма нуклеиновых кислот (полимеразы, нуклеазы, лигазы, топоизомеразы, и др.). Если P повышает каталитическую активность E, он снова увеличивает приспособленность всего ансамбля.

4. В то время как активность E по-прежнему зависит от наличия P, копия R (RL) может потерять исходную функцию катализа XY при сопутствующем усилении функции аминокислотной лигазы, в то время как другая копия (R0) сохраняет исходную функцию, все еще усиливаемую пептидом Р. Заметим, что это типичная субфункционализация, основной путь эволюции дуплицированных генов в современных геномах (см. гл. 8). Субфункционализация, возможно, была важна уже в мире РНК, когда выгода усиленного катализа R0 и Е перевешивала увеличение затрат на репликацию.

5. Повсеместный катализ при помощи пептидов в разделенной на ячейки добиологической системе делает аминокислоты ценным ресурсом для эволюционирующих эгоистичных кооперативов. Учитывая, что аминокислоты являются небольшими полярными молекулами, способными диффундировать сквозь стенки ячеек, накопление аминокислот в ячейке должно было быть полезным. Таким образом, связывающие аминокислоты малые РНК (T) развиваются под эволюционным давлением в сторону накопления аминокислот; эти молекулы могут рассматриваться как аналоги связывающих аминокислоты аптамеров (см. предыдущий раздел). Первоначально РНК T связывают аминокислоты неспецифически. Затем постепенно эволюционирует автокаталитическое аминоацилирование 3’-конца РНК T, что приводит к увеличению сродства к аминокислотам и избирательности в их связывании. Как и в случае пептид-лигазы на шаге 2, этой реакции необходим источник энергии; в этом качестве выступают активированные производные аминокислот, такие как аминоацил-аденилаты.

6. Различные виды РНК T, избирательно связывающие разные аминокислоты, эволюционируют путем дупликации и диверсификации, с сохранением вариантов под давлением отбора в сторону эффективного накопления широкого арсенала аминокислот. Детали связывания аминокислот РНК T будут разниться в зависимости от того, принимается ли гипотеза избирательного распознавания аминокислот специфическими (анти)кодонами. Если такого избирательного распознавания нет, то рассматривается сценарий «застывшей случайности», при котором сайт связывания в РНК T не имеет сродства к кодону или антикодону, а последовательность экспонированной петли (предтечи антикодонной петли) случайна. Независимо от конкретной модели (даже если принимается застывшая случайность), данный шаг, устанавливающий соответствие между аминокислотами и тринуклеотидами, является критически важным для становления генетического кода.

7. Рибозим RL развивает способность связывать комплексы аминоацил — РНК T, а не отдельные аминокислоты, что приводит к большей стабильности и пространственной точности связи. Главная биохимическая активность RL смещается от лигирования аминокислот к транспептидации (передача растущего пептида от одного вида РНК T к другому), что приводит, благодаря высокой энергии связи аминоацил-РНК, к увеличению выхода пептидов. Примечательно, что 50S субъединица бактериальной рибосомы, в качестве предка которой предполагается рибозим RL, может катализировать реакцию транспептидации со скоростью, сравнимой со скоростью полной рибосомы (Wohlgemuth et al., 2006).

8. Эволюционирует вспомогательная субъединица РНК RS под давлением отбора в сторону повышения эффективности связи и точности расположения комплекса аминоацил-T на RL. Механизм распознавания РНК T переходит от слабоизбирательного взаимодействия между РНК T и RL к избирательному спариванию оснований между протоантикодонной петлей T и РНК RS. Этот шаг является решающим в возникновении полноценной трансляции, механизма, основанного на адаптерах (прото-тРНК, РНК T в этой модели), сопрягающих аминокислоты с соответствующими им кодонами.

9. Поскольку происхождение тРНК всех специфичностей от единого предка очевидно, эволюционный путь от набора примитивных РНК T к современным тРНК требует специального объяснения. На описанных выше ранних этапах эволюции системы трансляции различные виды РНК T могли эволюционировать почти параллельными конвергентными путями. Тем не менее общее происхождение тРНК подразумевает последующее «бутылочное горлышко», через которое прошел только один победитель, молекула в форме «L» с акцепторным триплетом C–C–A на 3’-конце. Давление отбора при этом эволюционном «захвате» могло происходить в сторону пространственной комплементарности и усиленного взаимодействия между аминоацилированной РНК T и пептидил-трансферазой RL. Такой отбор изначально действовал на единственную РНК T, возможно имевшую сродство к наиболее распространенной аминокислоте. Впоследствии остальные тРНК должны были эволюционировать путем дупликации и специализации.

10. Следующим шагом в эволюции системы трансляции могло быть физическое отделение матричной цепи M от RS, в результате чего произошло дальнейшее разделение функций кодирования и катализа. В этот момент нить M освобождается от эволюционных ограничений, связанных с функциями катализа и связывания в первичной трансляции, поскольку эти функции перешли на физически различные молекулы РНК RL и RS и прото-тРНК. Единственным требованием к M остается ее способность принимать растянутую конформацию для размещения спаренных оснований кодона и антикодона при связывании аминоацил-T РНК. Эволюционные преимущества такого разделения очевидны: промежуточный ассоциат RSRL (который, на данный момент, можно обоснованно назвать проторибосомой) в присутствии в ячейке различных олиго— и полинуклеотидов обеспечит синтез все большего разнообразия пептидов, расширяя, таким образом, каталитические возможности ансамбля. Кроме того, этот шаг позволяет отбору действовать в сторону увеличения потенциала репликации (в частности, появления высокоспецифичных сайтов узнавания репликазы) тех видов M, которые кодируют полезные пептиды, приводя к повышению концентрации этих видов РНК в ячейке. По сути дела, в эгоистичном кооперативе запускается разновидность цикла Дарвина—Эйгена.