это). Мы имеем здесь дело со значимостью, "лишенной самой по себе смысла и, следовательно, способной принять на себя любой смысл, то есть со значимостью, чья уникальная функция заключается в заполнении зазора между означающим и означаемым". "Это символическая значимость нуля, то есть, знака, которым помечена необходимость символического содержания, дополнительного к тому содержанию, что уже наполняет означаемое, но которое при том может принять какое угодно значение, лишь бы последнее находилось в доступном резерве…" Важно понять, что эти две серии маркированы — одна посредством недостатка, другая посредством избытка — и что эти характеристики могут меняться местами без того, однако, чтобы между сериями когда-либо установилось равновесие. То, что в избытке в означающей серии, — это буквально пустая клетка, постоянно перемещающееся место без пассажира. То, чего недостает в означаемой серии, — это нечто сверхштатное, не имеющее собственного местоположения: неизвестное, вечный пассажир без места, или нечто всегда смещенное. Это две стороны одного и того же — две неравные стороны, благодаря которым серии коммуницируют, не утрачивая своего различия. В этом и состоит приключение в лавке Овцы, а также история, повествуемая эзотерическими словами.
Итак, мы можем определить некоторые минимальные условия структуры вообще: 1) Здесь должны быть по крайней мере две разнородные серии, одна из которых определяется как "означающая", а другая — как "означаемая" (одной серии никогда не достаточно для создания
структуры). 2) Каждая из серий задается терминами, существующими только посредством отношений, поддерживаемых между ними. Таким отношениям — или, вернее, их значимости — соответствуют особые события, а именно, сингулярности, которые можно выделить внутри структуры. Это очень напоминает дифференциальное исчисление, где распределение сингулярных точек соответствует значимости дифференциальных отношений2. Например, дифференциальные отношения между фонемами указывают на сингулярности в языке, в "окрестности" которых формируются звуковые и сигнификативные характеристики языка. Более того, сингулярности, относящиеся к одной серии, по-видимому, сложным образом определяют термины другой серии. Как бы то ни было, структура включает в себя два распределения сингулярных точек, соответствующих [обеим] базовым сериям. Поэтому, было бы неточно противопоставлять структуру и событие: структура включает в себя свод идеальных событий как собственную внутреннюю историю (например, если серия включает в себя "персонажей", то это история, которая соединяет все сингулярные точки, соответствующие взаимным положениям персонажей в этих двух сериях). 3) Две разнородные серии сходятся к парадоксальному элементу, выступающему в качестве их "различителя". В этом состоит принцип эмиссии сингулярностей. Данный элемент принадлежит не какой-то одной серии, а, скорее, обеим сразу. Он непрестанно циркулирует по ним. Следовательно, он обладает свойством не совпадать с самим собой, "отсутство-
___________
2 Такое сближение с дифференциальным исчислением может показаться неоправданным и излишним. Но что здесь действительно неоправданно — так это совершенно недостаточная интерпретация исчисления. Уже в конце девятнадцатого века Вейерштрасс дал окончательную интерпретацию — упорядоченную и статичную — очень близкую к математическому структурализму. Тема сингулярностей остается важной частью теории дифференциальных уравнений. Лучшим исследованием истории дифференциального исчисления и его современной структуралистской интерпретацией является работа С.В.Воуеr, The History of the Calculus and Its Conceptual Development, Dover, New York, 1959.
вать на собственном месте", не иметь самотождественности, самоподобия и саморавновесия. В одной серии он появляется как избыток, но только при условии, что в то же самое время в другой серии он проявляется как недостаток. Но если он — избыток в одной серии, то только как пустое место. А если он — недостаток в другой серии, то только как сверхштатная пешка или пассажир без купе. Он разом — и слово, и объект: эзотерическое слово и экзотерический объект.
Этот элемент выполняет функцию соединения двух серий — одной с другой, функцию их взаимного отображения друг в друге; он обеспечивает их коммуникацию, сосуществование и ветвление. А кроме того, он выполняет функцию объединения сингулярностей, соответствующих двум сериям, в "истории с узелками" — функцию, обеспечивающую переход от одного распределения сингулярностей к другому. Короче, данный элемент осуществляет распределение сингулярных точек; определяет в качестве означающей ту серию, где он появляется как избыток, а в качестве означаемой, соответственно, ту, где он появляется как недостаток; и главное, обеспечивает при этом наделение смыслом как означающей, так и означаемой серии. Ибо смысл не следует смешивать с сигнификацией. Скорее, это атрибут, который определяет означающее и означаемое как таковые. Отсюда можно сделать вывод, что не бывает структуры без серий, без отношений между терминами каждой серии и без сингулярных точек, соответствующих этим отношениям. Более того, можно сделать вывод, что не существует структуры без пустого места, приводящего все в движение.
Девятая серия: проблематическое
Что же такое идеальное событие? Это — сингулярность, или, скорее, совокупность сингулярностей, сингулярных точек, характеризующих математическую кривую, физическое положение вещей, психологическую или нравственную личность. Это — поворотные пункты и точки сгибов; узкие места, узлы, преддверия и центры; точки плавления, конденсации и кипения; точки слез и смеха, болезни и здоровья, надежды и уныния, точки чувствительности. Однако, такие сингулярности не следует смешивать ни с личностью того, кто выражает себя в дискурсе, ни с индивидуальностью положения вещей, обозначаемого предложением, ни с обобщенностью или универсальностью понятия, означаемого фигурой или кривой. Сингулярность пребывает в ином измерении, а не в измерении обозначения, манифестации или сигнификации. Она существенным образом до-индивидуальна, нелична, аконцептуальна. Она совершенно безразлична к индивидуальному и коллективному, личному и безличному, частному и общему — и к их противоположностям. Сингулярность нейтральна. С другой стороны, она не "нечто обыкновенное": сингулярная точка противоположна обыкновенному1.
Мы сказали, что каждой серии структуры соответствует совокупность сингулярностей. И наоборот, каждая сингулярность — источник расширения серий в направлении окрестности другой сингулярности. В этом смысле
_____________________
1 Раньше нам казалось, что смысл как "нейтральное" противоположен сингулярному так же, как и другим модальностям, ибо сингулярность определялась только в отношении денотации и манифестации. Сингулярность определялась как индивидуальное и личное, а не как точечное. Напротив, теперь сингулярность принадлежит нейтральной области.
в структуре содержится не только несколько расходящихся серий, но каждая серия сама задается несколькими сходящимися под-сериями. Если рассмотреть сингулярности, соответствующие двум основным базовым сериям, то обнаружится, что в обоих случаях они различаются благодаря своему распределению. От серии к серии какие-то сингулярные точки либо исчезают, либо разделяются, либо меняют свою природу и функцию. В тот момент, когда две серии резонируют и коммуницируют, мы переходим от одного распределения к другому. То есть в тот момент, когда парадоксальный элемент пробегает серии, сингулярности смещаются, перераспределяются, трансформируются одна в другую и меняют состав. Если сингулярностями выступают вариабельные события, то они коммуницируют в одном и том же Событии, которое без конца перераспределяет их, тогда как их трансформации формируют историю. Пегю ясно понимал, что история и событие неотделимы от сингулярных точек: "У событий есть критические точки, так же как у температуры есть критические точки: точки плавления, замерзания, кипения, конденсации, коагуляции и кристаллизации. Внутри события есть даже состояния перенасыщения, которые осаждаются, кристаллизуются и устанавливаются только посредством введения фрагмента будущего события"2. К тому же, Пегю изобрел целый язык — патологичнее и эстетичнее которого трудно себе представить — для того, чтобы объяснить, как сингулярность переходит в линию обычных точек, как она снова начинается в другой сингулярности, как она перераспределяется в другую совокупность (два повтора — плохой и хороший, один — сажает на цепь, другой — вызволяет).
События идеальны. Новалисе говорит где-то, что существует два хода событий: один — идеальный, другой — реальный и несовершенный. Например, идеальный Протестантизм и реальное Лютеранство3. Однако, это различие проходит не между двумя типами событий, а скорее, между идеальным событием и его пространственно-
________
2 Peguy, Clio, Paris, Gallimard, p. 269.
3 Novalis, L'Encyclopedic, tr. Maurice de Gandillac, ed. de Minuit, Paris, p. 396.
временным осуществлением в положении вещей. Оно между событием и происшествием. События — это идеальные сингулярности, коммуницирующие в одном и том же Событии. Следовательно, они обладают вечной истиной. Их временем никогда не является настоящее, вынуждающее их существовать и происходить. Скорее, события неизменно пребывают именно в безграничном Эоне, в Инфинитиве. Только события идеальны. Пересмотр платонизма означает, прежде всего и главным образом, замену сущностей на события как потоки сингулярностей. У двойной битвы есть конкретная цель — устранить всякое догматическое смешивание события с сущностью, а кроме того, исключить эмпирическое отождествление события с происшествием.
Модус события — проблематическое. Нельзя сказать, что существуют проблематические события. Можно говорить, что события имеют дело исключительно лишь с проблемами и определяют их условия. У неоплатоника Прокла есть прекрасные