страницы, где понятие геометрической теоремы противопоставляется проблематическому. Прокл определяет проблему посредством событий, призванных воздействовать на логическую материю (рассечения, удаления, присоединения и так далее), тогда как теоремы имеют дело со свойствами, дедуцируемыми из сущности4. Событие само по себе является проблематическим и проблематизирующим. Проблема определяется только сингулярными точками, выражающими ее условия. Нельзя сказать, что таким образом проблема решается. Наоборот, так она утверждается в качестве проблемы. Например, в теории дифференциальных уравнении существование и распределение сингулярностей связано с проблемным полем, которое задается уравнением как таковым. Что касается решения, то оно появляется только вместе с интегральными кривыми и с той формой, какую эти кривые принимают в окрестности сингулярности внутри векторного поля. Так что, по-видимому, у проблемы всегда есть решение, соответствующее задающим ее условиям. Фактически, сингулярности контролируют генезис решений уравнения. Тем
___________
4 Proclus, Commenlaires sur le premier livre des Elements d'Euclide, tr. Ver Eecke, Desclee de Brouwer, pp.68 sq.
не менее, как отметил Лотман, это тот случай, когда инстанция-проблема и инстанция-решение различаются по природе5, поскольку они представляют, соответственно, идеальное событие и его пространственно-временное осуществление. Значит, нужно покончить с застарелой привычкой мысли рассматривать проблематическое как субъективную категорию нашего знания, как эмпирический момент, указывающий только на несовершенство наших методов и на нашу обреченность ничего не знать наперед — обреченность, исчезающую только по мере приобретения соответствующего знания'. Даже если решение снимает проблему, она, тем не менее, остается в Идее, связывающей проблему с ее условиями и организующей генезис решения как такового. Без этой Идеи решение не имело бы смысла. Проблематическое является одновременно и объективной категорией познания, и совершенно объективным видом бытия. "Проблематическое" характеризует именно идеальные объективности. Кант, без сомнения, был первьм, кто принял проблематическое не как мимолетную неопределенность, а как истинный объект Идеи, а значит, как неустранимый горизонт всего, что происходит и является.
В результате можно по-новому осознать связь математики с человеком: речь не о том, чтобы исчислить или измерить способности человека. Скорее, с одной стороны, речь идет о проблематизации человеческих событий, а с другой — о том, что человеческие события сами являются условиями проблемы. Эта двойная цель достигается в придуманной Кэрролом развлекательной математике. Первый аспект появляется как раз в тексте, озаглавленном "История с узелками". Эта история составлена из узелков, которые всякий раз окружают син-
_________________
5 Cf. Albert Lautman, Essai sur les notions de structure et d'existence en mathematiques, Paris, Hermann, 1938, 1.2, pp.148–149; et Nouvelles recherches sur la structure dialectique des mathematiques, Hermann, 1939, pp. 13–15. О роли сингулярностей см. Essai, 2, pp. 138–139; et Le Probleme du Temps, Paris, Hermann, 1946, pp.41–42.
Пегю по-своему увидел существенную связь между событием, или сингулярностью, и категориями проблемы и решения: см. ор. cit., р.269: "…и проблема, которую мы не можем видеть до конца, проблема без исхода…", и т. д.
гулярности, соответствующие некой проблеме. Эти сингулярности оживают благодаря персонажам, которые перемещаются и перераспределяются от проблемы к проблеме, пока вновь не отыщут друг друга в десятом узелке, пойманные в сеть своих родственных отношений. На место Мышиного это, отсылающего либо к поглощаемым объектам, либо к выражаемым смыслам, теперь заступают данные [data], которые отсылают то к пищеварению, то к "дано", то есть к условиям проблемы. Вторая — более глубокая — попытка предпринята в Динамике части-цы: "Можно наблюдать, как две линии прокладывают свой монотонный путь по плоской поверхности. Старшая из двух благодаря долгой практике постигла искусство ложиться точно между экстремальными точками — искусство, которого так мучительно не хватает молодой и импульсивной траектории. Но та, что моложе, с девичьей резвостью все время стремилась отклониться и стать гиперболой или какой-нибудь другой романтической и незамкнутой кривой… До сих пор судьба и лежащая под ними поверхность держали их порознь. Но долго так не могло продолжаться: какая-то линия пересекла их, да так, что сделала сумму двух внутренних углов меньше, чем два прямые угла…"
Не нужно видеть в этом тексте просто аллегорию или способ антропоморфизации математики — как, впрочем, и в замечательном отрывке из Сильвин и Бруно: "Однажды совпадение гуляло с маленьким происшествием, и они встретили объяснение…". Когда Кэррол рассказывает про параллелограмм, который вздыхает по внешним углам и сетует, что не может быть вписан в круг, или про кривую, страдающую от "рассечении и изъятий", которым ее подвергают, то нужно помнить, что психологические и нравственные персонажи тоже созданы из до-личных сингулярностей, что их чувства и пафос тоже заданы в окрестности этих сингулярностей, чувствительных критических точек, поворотных пунктов, точек кипения, узелков и преддверий (того, что Кэррол, например, называет простой гнев и праведный гнев). Две линии Кэррола вызывают две резонирующие серии. Их устремления вызывают распределения сингулярностей, переходящих одна в другую и перераспределяю-
щихся в ходе узелковой истории. Как говорил Кэррол, "гладкая поверхностность — это характер повествования, в котором, какие две точки не возьми, оказывается, что говорящий псевдо-целиком разлегся [s'etendre en tout-en-faux] относительно этих двух точек"6. В Динамике частицы Кэррол дает очерк теории серий и теории степеней и сил частиц, организованных в эти серии ("LSD, функция большой ценности…").
События можно обсуждать только в контексте тех проблем, чьи условия определены этими событиями. События можно обсуждать только как сингулярности, развернутые в проблематическом поле, в окрестности которого происходит отбор решений. Вот почему все работы Кэррола пронизаны целостным методом проблем и решений, устанавливающим научный язык событий и их осуществлений. Итак, если распределения сингулярностей, соответствующие каждой серии, формируют поля проблем, то как тогда охарактеризовать парадоксальный элемент, пробегающий по этим сериям, заставляющий их резонировать, коммуницировать и разветвляться — элемент, управляющий всеми повторениями, превращениями и перераспределениями? Сам этот элемент следует определять как место вопроса. Проблема задается сингулярными точками, соответствующими сериям, но вопрос определяется некой случайной точкой, соответствующей пустому месту или подвижному элементу. Метаморфозы и перераспределения сингулярностей формируют историю. Каждая комбинация и каждое распределение — это событие. Но парадоксальный элемент — это Событие, в котором коммуницируют и распределяются все события. Это — Уникальное событие, а все другие события являются его фрагментами и частями. Позже Джеймс Джойс сможет придать смысл методу вопросов и ответов, дублирующему метод проблем — Выпытывание, которое обосновывает Проблематическое. Вопрос развора-
__________
6 Словосочетанием "псевдо-разлегся" [s'etendre en faux] мы попытались перевести английский глагол to lie. (Французское слово faux означает "ложный, неверный, фальшивый"; s'etendre — "тянуться, растягиваться, простираться". Английский же глагол to lie имеет два разных основных значения — лгать и лежать. — Примечание переводчика.)
чивается в проблемы, а проблемы сворачиваются в неком фундаментальном вопросе. И так же как решения не подавляют проблем, а напротив, открывают в них присущие им условия, без которых проблемы не имели бы смысла, — так и ответы вовсе не подавляют и даже не нейтрализуют вопрос, упорно сохраняющийся во всех ответах. Следовательно, существует некий аспект, в котором проблемы остаются без решения, а вопрос без ответа. Именно в этом смысле проблема и вопрос обозначают идеальные объективности и обладают своим собственным бытием — минимумом бытия (например, "загадки без разгадки" в Алисе). Мы уже увидели, что эзотерические слова существенно связаны с проблемой и вопросом. С одной стороны, слова-бумажники неотделимы от проблемы, которая разворачивается в разветвленные серии. Эта проблема вовсе не выражает субъективную неопределенность. Напротив, она выражает объективное равновесие разума, помещенного прямо в горизонте того, что случается или является: Ричард или Вильям? Злой-опасный или опасный-злой? В обоих случаях распределение сингулярностей налицо. С другой стороны, пустые слова или, точнее, слова, обозначающие пустое слово, неотделимы от вопроса, который сворачивается и перемещается по сериям. Вопрос связан с тем самым элементом, которого никогда нет на своем месте, который не походит на себя самого и несамотождественен, и который поэтому является объектом фундаментального вопроса, перемещающегося вместе с ним: что такое Снарк? что такое Флисс? что такое Это? Оставаясь рефреном песни, чьи куплеты формируют множество серий, по которым он циркулирует в облике магического слова, чьи все имена, которыми песня "называется", не заполняют пустоты, — этот парадоксальный элемент обладает именно тем сингулярным бытием, той "объективностью", которая соответствует вопросу как таковому и при этом никогда не дает на него никакого ответа.
Десятая серия: идеальная игра
Льюис Кэррол не только изобретает игры и видоизменяет правила уже известных игр (теннис, крокет), но вводит и некий вид идеальной игры, чей смысл и функцию трудно оценить с первого взгляда. Например, бег по кругу в