ЛОГИКА — страница 23 из 87

вне объёма понятия «горький, как полынь».

В суждениях об отношении между предметами по величине, по силе, по пространству, по времени, по сравнительной ценности и т. д. мыслится различие между сравниваемыми предметами. Поэтому отношение между объёмами понятий будет отношением выключения объёма одного понятия из объёма другого понятия.

§ 7. В суждениях о принадлежности признака предмету, так же как и в суждениях об отношениях величины, пространства, времени и т. д., анализ отношения между субъектом и предикатом по объёму обычно не производится. Правда, и в этих суждениях из мыслимого в них отношения между содержанием понятий субъекта и предиката может быть выведено отношение между объёмами этих понятий. Если я знаю, что хинин горек, т. е. что хинину принадлежит свойство горечи, то я могу на этом основании сказать, что объём понятия «хинин» входит, как часть, в более широкий объём понятия «горький». Но совершенно очевидно, что сведение суждения «хинин горек» к отношению между объёмами понятий «хинин» и «горькое» не отвечает тому вопросу, ответом на который является суждение «хинин горек». В суждении этом вопрос идёт не о том, к какому классу предметов принадлежит хинин, а о том свойстве, которое принадлежит хинину.

§ 8. Напротив, анализ отношений между объёмами понятий с успехом применяется при разборе суждений об отношениях принадлежности предмета классу предметов.

Если содержание понятий, точно очерчивающее их объём, уже установлено, мы вправе и в дальнейшем сосредоточить своё внимание на отношении между объёмами. Право это основывается на том, что в суждениях о принадлежности предмета классу предметов всякое рассмотрение отношений между объёмами понятий основывается на рассмотрении отношений между содержаниями, которыми очерчиваются самые объёмы. В суждениях, выражающих принадлежность предмета классу предметов, отношение между объёмами субъекта и предиката и есть тот самый вопрос, на который эти суждения отвечают. И действительно: в практической жизни и в науке на каждом шагу приходится выяснять, входит ли данный вид в известный род или не входит в него. Так, ботаник, изучая новый вид растения, должен решить вопрос, принадлежит ли этот вид к цветковым растениям или к споровым.

В зависимости от решения этих вопросов понятие субъекта включается в известный класс или выключается из него.

§ 9. Таким образом, по значению, какое для понимания суждения имеет отношение между объёмами субъекта и предиката, суждения делятся на две группы. К первой группе принадлежат, во-первых, суждения об отношениях и, во-вторых, суждения о принадлежности признака предмету. Во всех суждениях этих двух видов рассмотрение отношений между субъектом и предикатом обычно не идёт дальше рассмотрения отношений между содержанием этих понятий. В этих суждениях отношения между объёмами субъекта и предиката хотя и могут быть выведены, однако они не будут соответствовать вопросу, ответом на который эти суждения являются.

Вторую группу составляют суждения об отношениях принадлежности предмета классу предметов или класса предметов другому классу предметов. В этих суждениях рассмотрение отношений между объёмами субъекта и предиката не только возможно (как оно возможно и в суждениях первой группы), но и целесообразно, так как соответствует вопросу, ответом на который является суждение.

§ 10. Так как во всех истинных суждениях о принадлежности предмета классу предметов отношение между объёмами субъекта и предиката точно соответствует отношению между содержанием этих понятий, то можно рассматривать отношение между понятиями субъекта и предиката не по содержанию, а по объёму. Поступая таким образом, мы не сделаем ошибки, если рассматриваемое суждение истинно.

В суждениях о принадлежности предмета классу предметов рассмотрение отношений между объёмами субъекта и предиката чрезвычайно упрощает анализ суждения, так как отношения эти чрезвычайно просты и легко могут быть представлены посредством наглядных схем. Поэтому суждения о принадлежности предмета классу предметов логика обычно выделяет из всех суждений в особую группу. В суждениях этой группы логика рассматривает отношения между объёмами субъекта и предиката во всех видах суждений, отличающихся друг от друга по количеству и по качеству.


Отношение между объёмами субъекта и предиката в суждениях о принадлежности предмета классу предметов


§ 11. В общеутвердительных суждениях о принадлежности предмета классу предметов (А) объём субъекта полностью входит в объём предиката. Так, в суждении «все бамбуки — злаки» объём субъекта (понятие «бамбук») полностью включается в объём предиката (понятие «злак»).

Но из того, что объём субъекта полностью входит в объём предиката, ещё не видно, какую именно часть объёма предиката составит объём субъекта. Здесь возможны два случая. Во-первых, объём субъекта может оказаться всего лишь частью объёма предиката. Так, в суждении «все бамбуки — злаки» объём субъекта входит в объём предиката именно таким образом. Все бамбуки — злаки, но бамбуками не исчерпываются все злаки. Кроме злаков - бамбуков есть другие виды злаков: рис, кукуруза, рожь, пшеница, овёс, просо и т. д.

В случае, когда объём субъекта целиком входит в объём предиката, но составляет только часть объёма предиката, отношение между понятиями субъекта и предиката может быть представлено следующей схемой (см. рис. 12).

Рис. 12

Здесь большой круг Р означает объём предиката, меньший круг S — объём субъекта. Из схемы видно, что весь объём S целиком входит в объём Р, но составляет только часть объёма Р, так что, кроме S, в объёме Р могут оказаться, в качестве его частей, объёмы других понятий. Во-вторых, объём субъекта может оказаться не частью объёма Р, но может оказаться целиком совпадающим с объёмом Р. Так, в суждении «все квадраты — равносторонние прямоугольники» объём субъекта не только полностью входит в объём предиката, но и полностью исчерпывает объём предиката: не только все квадраты — равносторонние прямоугольники, но кроме квадратов других равносторонних прямоугольников нет.

В случае, когда объёмы S и Р полностью совпадают, отношение между понятиями субъекта и предиката может быть представлено следующей схемой (см. рис. 13).

Рис. 13

Здесь объём S и объём Р представлены одним и тем же кругом SP, т. е. понятия субъекта и предиката оказываются равнозначащими. Не трудно понять, что в этом последнем случае суждение есть не что иное, как определение понятия. Сказать, что все квадраты — равносторонние прямоугольники, это значит определить понятие «квадрат». А так как в правильном определении объём определяемого в точности равен объёму определяющего, то неудивительно, что объёмы S и Р оказались совпадающими.

§ 12. В частноутвердительных суждениях о принадлежности предмета классу предметов объём субъекта входит в объём предиката не полностью, но лишь некоторой своей частью. Так, в суждении «некоторые математики были астрономами» объём субъекта (понятие «математики») входит в объём предиката (понятие «астрономы») только в некоторой своей части: не все математики, но лишь часть математиков были астрономы.

Частичная принадлежность объёма субъекта объёму предиката бывает двух видов.

Первый вид образуют суждения, в которых понятия субъекта и предиката — понятия перекрещивающиеся. Таково суждение «некоторые математики были астрономами». Для суждений этого вида схема, представляющая отношение между объёмами субъекта и предиката, — та же, что и схема для перекрещивающихся понятий (см. рис. 14).

Рис. 14

Из схемы видно, что какая-то часть объёма S входит в объём Р. Общая обоим кругам часть их поверхности, заштрихованная на рисунке, представляет ту часть объёма субъекта, которая будет у него общей с объёмом предиката.

Второй вид суждений, выражающих частичную принадлежность объёма субъекта объёму предиката, образуют суждения, в которых понятие предиката подчинено понятию субъекта. Так, в суждении «некоторые орудия — ракетные» весь объём предиката (понятие «ракетное орудие») составляет только часть объёма субъекта (понятие «орудия»). Для суждений этого типа отношение между объёмами субъекта и предиката может быть представлено рис. 15.

Рис. 15

Из этой схемы видно, что объём предиката (круг Р) весь входит в объём субъекта (все ракетные орудия суть орудия), но объём субъекта (круг S) только частью совпадает с объёмом предиката (только часть орудий — ракетные орудия). Заштрихованный на рисунке круг Р, представляющий весь объём предиката, есть та часть объёма субъекта, которая совпадает с предикатом.

§ 13. В общеотрицательных суждениях о принадлежности предмета классу предметов (Е) объём субъекта ни в какой своей части не совпадает с объёмом предиката.

Так, в суждении «ни один герой не может быть трусом» объёмы субъекта и предиката мыслятся один вне другого: ни в числе героев не может быть трусов, ни в числе трусов не может быть героев. Это отношение между объёмами понятий представлено на рис. 16.

Рис. 16

Из этой схемы видно, что в объёме субъекта (круг S) нет ни одной части, которая оказалась бы принадлежащей одновременно объёму предиката (круг Р). И наоборот: в объёме предиката нет ни одной части, которая одновременно принадлежала бы объёму субъекта.

§ 14. В частноотрицательных суждениях о принадлежности предмета классу предметов (О) из объёма предиката исключается не весь объём субъекта — как это бывает в общеотрицательных суждениях, — но только часть объёма субъекта. Так, в суждении «некоторые водные животные — не позвоночные» из объёма позвоночных исключаются не все водные животные, но только часть их. Другая часть объёма «водных животных» оказывается общей с объёмом позвоночных. Это отношение частичного исключения объёма субъекта из объёма предиката представлено на рис. 17.