меньший термин, т. е. субъект вывода (S).
Силлогизмы могут иметь различное строение посылок, и потому самые выводы в них могут стоять в зависимости от различных правил. Логика устанавливает все эти правила и изучает все разновидности силлогизмов.
§ 10. Первая группа силлогизмов — так называемые простые категорические силлогизмы. Так называются силлогизмы, в которых вывод получается из двух посылок и в которых обе посылки суть суждения категорические.
Рассматривая встречающиеся в практике мышления простые категорические силлогизмы, можно заметить, что расположение понятий, или терминов, в посылках этих силлогизмов может быть различным.
Рассмотрим следующий силлогизм:
Все амфибии — позвоночные. | М—Р |
Все лягушки — амфибии. | S—M |
——————————— | ——— |
Все лягушки — позвоночные. | S—P |
В нём средний термин в большей посылке является субъектом, а в меньшей — предикатом.
Силлогизм, в котором понятия, или термины, расположены таким образом, называется силлогизмом первой фигуры.
В нашем примере силлогизма первой фигуры меньшая посылка («все лягушки — амфибии») выясняет, что весь объём класса S входит как часть в более обширный объём класса М (см. рис. 38).
Рис. 38
Бо́льшая посылка («все амфибии — позвоночные») выясняет, что этот более обширный объём класса М весь входит как часть в ещё более обширный объём класса Р (см. рис. 39).
Рис. 39
Сопоставляя эти отношения понятий, выяснившиеся из посылок, устанавливаем в выводе («все лягушки — позвоночные») принадлежность класса S, имеющего наименьший объём, к классу Р, имеющему наибольший объём (см. рис. 40).
Рис. 40
§ 11. Рассмотрим теперь другой пример силлогизма:
Все звёзды светят собственным светом.
Ни одна планета не светит собственным светом.
—————————————————
Ни одна планета, не есть звезда.
Вывод этот — силлогизм. В нём заключение, или вывод («ни одна планета не есть звезда»), получено из двух посылок. В посылках этих устанавливается отношение субъекта вывода («планета») и предиката вывода («звезда») к третьему, или среднему, понятию («тело, светящее собственным светом»). Именно через отношение среднего понятия к понятиям «планета» и «звезда» выясняется отношение этих последних между собой.
И действительно: бо́льшая посылка («все звёзды светят собственным светом») устанавливает, что весь объём класса Р входит в объём класса М (см. рис. 41).
Рис. 41
Меньшая посылка («ни одна планета не светит собственным светом»)устанавливает, что класс не принадлежит к классу М, т. е. что весь объём класса S целиком находится вне объёма класса М (см. рис. 42).
Рис. 42
Сопоставляя эти отношения понятий, выяснившиеся из посылок, заключаем в выводе («ни одна планета не есть звезда»), что класс S не принадлежит к классу Р, т. е. что весь объём класса S находится вне всего объёма класса Р (см. рис. 43).
Рис. 43
Присматриваясь к расположению терминов в посылках и в выводе этого силлогизма, замечаем, что это расположение
Р — М
S — M
———
S — Р
отличается от расположения терминов в силлогизме первой фигуры:
М — Р
S — M
———
S — Р
А именно: во втором силлогизме средний термин в обеих посылках — большей и меньшей — является предикатом. Силлогизм с таким расположением терминов называется силлогизмом второй фигуры.
§ 12. Рассмотрим третий пример силлогизма:
Все утконосы — животные, кладущие яйца.
Все утконосы — млекопитающие.
————————————————————
Некоторые млекопитающие — животные, кладущие яйца.
И этот вывод —силлогизм. И в нём на основе устанавливаемого в двух посылках отношения понятия «млекопитающие» и понятия «животные, кладущие яйца» к третьему понятию («утконосы») устанавливается отношение субъекта к предикату в заключении.
Бо́льшая посылка («все утконосы — животные, кладущие яйца») устанавливает, что класс М принадлежит к классу Р, т.е. что весь объём класса М входит как часть в объём класса Р (см. рис. 44).
Рис. 44
Меньшая посылка («все утконосы — млекопитающие») устанавливает, что класс М принадлежит к классу S, т. е., что весь объём класса М входит как часть в объём класса S (см. рис. 45).
Рис. 45
Сопоставляя эти отношения понятий, выяснившиеся из посылок, заключаем в выводе («некоторые млекопитающие — животные, кладущие яйца»), что какая-то часть класса S принадлежит к классу Р, т. е. объём S в какой-то своей части совпадает с объёмом Р (см. рис. 46).
Рис. 46
И действительно, так как весь объём М целиком помещается как внутри объёма S, так и внутри объёма Р, то все те части объёма S, которые заняты объёмом М, будут в то же время и частями объёма Р. И наоборот: все те части объёма Р, которые заняты объёмом М, будут в то же время и частями объёма S.
Рассмотрим расположение терминов в последнем силлогизме:
М — Р
М — S (III)
———
S — P
Здесь расположение терминов отличается от их расположения в силлогизмах первой и второй фигуры:
M — P | P — M | |||
S — M | (I) | и | S — M | (II) |
———— | ———— | |||
S — P | S — P |
А именно: в третьем силлогизме средний термин в обеих посылках оказывается субъектом. Силлогизм с таким расположением терминов называется силлогизмом третьей фигуры.
Различия между тремя фигурами простого категорического силлогизма представляют интерес не только потому, что термины в посылках этих силлогизмов размещены различным образом. Различное расположение терминов в посылках связано с различным отношением между содержанием и объёмом понятий, входящих в посылки и в выводы. И действительно: от того, будет ли, например, средний термин субъектом посылки или её предикатом, зависит распределённость среднего термина в посылках, т. е. возможность мыслить средний термин во всём объёме или только в части его объёма. То же справедливо и относительно большего и меньшего термина. В свою очередь от отношения между содержанием и объёмом понятий, входящих в посылки и в выводы, зависит различная ценность фигур силлогизма для логического мышления и знания, а потому различная роль, какую каждая из фигур играет в доказательствах и рассуждениях.
§ 13. Чтобы выяснить роль каждой фигуры, т. е. характер выводов, которые могут быть получены посредством этой фигуры, необходимо познакомиться с разновидностями фигур, или модусами.
Сравнивая различные выводы, сделанные по одной и той же фигуре, замечаем, что силлогизмы одной и той же фигуры могут различаться между собой качеством и количеством посылок и вывода.
Сравним два силлогизма:
Все злаки — однодольные растения. | Ни один злак не есть двудольное растение. |
Все бамбуковые — злаки. | Все бамбуковые — злаки. |
———————————— | ———————————— |
Все бамбуковые — однодольные растения. | Ни одно бамбуковое не есть двудольное растение. |
Оба эти силлогизма — силлогизмы первой фигуры, так как в обоих средний термин является субъектом в большей и предикатом в меньшей посылке. Но в то же время между этими двумя силлогизмами первой фигуры имеется и различие. Состоит оно в различном качестве посылок и вывода. В первом силлогизме обе посылки и вывод — суждения общеутвердительные. Схема этого силлогизма:
А
А
—
А
Во втором силлогизме бо́льшая посылка есть суждение общеотрицательное, меньшая — общеутвердительное, вывод — суждение общеотрицательное. Схема этого силлогизма:
Е
А
—
Е
Сравним ещё два силлогизма:
Все грибы — споровые растения. | Ни одна планета не есть звезда. |
Некоторые бесцветковые — грибы. | Некоторые светила — планеты. |
———————————— | ———————————— |
Некоторые бесцветковые — споровые растения. | Некоторые светила — не звёзды. |
Оба эти силлогизма — также силлогизмы первой фигуры, так как в обоих средний термин является субъектом в большей и предикатом в меньшей посылке. Но в то же время между этими двумя силлогизмами первой фигуры имеется и различие. Состоит оно в различном качестве и количестве посылок и вывода. В первом силлогизме и посылки и вывод по качеству — суждения утвердительные. По количеству же большая посылка — суждение общее, меньшая — частное, вывод — также частное. Схема этого силлогизма:
А
I
—
I
Во втором силлогизме бо́льшая посылка есть суждение общеотрицательное, меньшая — частноутвердительное, вывод — суждение частноотрицательное. Схема этого силлогизма:
Е
I
—
О
Сравнивая качество и количество выводов во всех четырёх примерах силлогизма первой фигуры, приведённых выше, видим, что в первом примере вывод — общеутвердительный («все бамбуковые — однодольные растения»), во втором — общеотрицательный («ни одно бамбуковое не есть двудольное растение»), в третьем - частноутвердительный («некоторые бесцветковые — споровые растения»), в четвёртом — частноотрицательный («некоторые светила — не звёзды»).