Эпикур был атомистом.
Эпикур утверждал возможность свободы.
—————————————————————
След., некоторые атомисты утверждали возможность свободы.
В этом силлогизме субъектом заключения «некоторые атомисты утверждали возможность свободы» является, несмотря на частный характер заключения, именно группа в целом: вся группа атомистов характеризуется как такая, внутри которой как её часть могут быть найдены лица, допускавшие возможность свободы.
Четвёртая фигура и её особые правила
§ 43. Рассмотренные четырнадцать правильных модусов были установлены основателем науки логики, древнегреческим философом Аристотелем (384—322 до н. э.). Уже ближайшие продолжатели логических работ Аристотеля обратили внимание на то, что в первой фигуре кроме указанных Аристотелем четырёх модусов возможны ещё пять. Модусы эти возможны в случае, если средний термин является предикатом в большей посылке и субъектом в меньшей. (В аристотелевской первой фигуре средний термин является, напротив, субъектом в большей посылке и предикатом — в меньшей.)
Спустя 500 лет после Аристотеля учёный Гален выделил правильные модусы, получающиеся при таком расположении терминов, в новую — четвёртую — фигуру.
Схема четвёртой фигуры:
Р—М
М—S
———
S—P
Хотя четвёртая фигура теоретически возможна и даёт пять правильных модусов, в действительном мышлении выводы по четвёртой фигуре не встречаются. Искусственность четвёртой фигуры состоит в том, что положение меньшего и большего терминов в выводе обратно положению этих терминов в посылках. Поэтому нельзя придумать ни одного примера вывода по четвёртой фигуре, который не был бы искусственным.
Например:
Bce тюлени — ластоногие. | М—Р |
Ни одно ластоногое не есть рыба. | Р—М |
———————————— | ——— |
Ни одна рыба не есть тюлень. | М—S |
Здесь естественным был бы, конечно, вывод по первой фигуре:
Ни одно ластоногое не есть рыба. | М—Р |
Все тюлени—ластоногие. | S—М |
———————————— | ——— |
Ни один тюлень не есть рыба. | S—P |
Ввиду совершенной искусственности четвёртой фигуры отметим только важнейшие её особенности без подробного их рассмотрения и выведения.
Выводы по четвёртой фигуре могут быть частноутвердительные, общеотрицательные и частноотрицательные.Общеутвердительных выводов четвёртая фигура (так же как вторая и третья) не даёт. Общий вывод по четвёртой фигуре может быть только отрицательный. При утвердительности большей посылки меньшая посылка в четвёртой фигуре должна быть общей. При отрицательности одной из посылок большая посылка в четвёртой фигуре должна быть общей.
Правильные модусы четвёртой фигуры: AAI, АЕЕ, IAI, ЕАО, ЕIO. Их искусственные названия — Bramantip, Camenes, Dimaris, Fesapo, Fresison.
Таким образом, учитывая возможность добавочных пяти модусов четвёртой фигуры, получаем всего девятнадцать правильных модусов простого категорического силлогизма.
Сведение всех фигур простого категорического силлогизма к первой фигуре
§ 44. Каждая из фигур со всеми своими модусами самостоятельна и имеет свою особую область применения. Но так как отношение между меньшим и бо́льшим терминами, составляющее вывод, определяется отношениями между всеми тремя понятиями силлогизма и так как отношения эти могут раскрываться в различном порядке — смотря по тому, с какого понятия. мы начнём рассмотрение, — то вывод, сделанный по какой-нибудь фигуре силлогизма, может быть сделан и по любой другой (если только этому не противоречит качество и количество вывода). Такое изменение вывода, сделанного по какой-либо фигуре силлогизма, в вывод, сделанный по другой фигуре, называется сведением.
В логике подробно устанавливаются правила сведения всех фигур к первой фигуре — ввиду того значения, какое выводы по первой фигуре, особенно модус Barbara, имеют в научном и повседневном мышлении.
Обычно выводы по третьей фигуре сводятся к выводам по первой фигуре путём обращения одной из посылок.
Например, вывод по третьей фигуре
Все киты — млекопитающие. | М—Р |
Все киты — водные животные. | S—М |
————————————————— | ——— |
Некоторые водные животные — млекопитающие | S—P |
может быть изменён в вывод по первой фигуре. Для этого, оставив бо́льшую посылку без изменения, обращаем меньшую посылку: «все киты — водные животные». Обращение общеутвердительного суждения, выражающего подчинение понятия S понятию Р даёт, как известно, суждение частноутвердительное: «некоторые водные животные — киты». Теперь соединим оставленную без изменения большую посылку с обращённой меньшей:
Все киты—млекопитающие.
Некоторые водные животные—киты.
В посылках этих термины расположены по схеме уже не третьей, а первой фигуры:
М—Р
S—M
———
S—P
Вывод по первой фигуре (по модусу Darii) будет: «некоторые водные животные — млекопитающие». Как видим, вывод —тот же самый, который в первом случае был сделан по третьей фигуре (по модусу Darapti).
§ 45. Существует более сложный способ сведения. Способ этот применяется при сведении некоторых выводов по второй и по третьей фигуре к выводу по первой.
Рассмотрим силлогизм:
Все планеты обращаются вокруг солнца. | Р—М |
Некоторые светила не обращаются вокруг солнца. | S—М |
————————————————— | ——— |
Некоторые светила — не планеты. | S—P |
Силлогизм этот, как видно из расположения терминов, есть вывод по второй фигуре (модус Ваrосо). Для сведения его к выводу по первой фигуре будем рассуждать следующим образом. Допустим, что заключение нашего вывода ложно, т. е. допустим, что все светила — планеты. Оставим бо́льшую посылку без изменения и присоединим к ней в качестве меньшей посылки суждение «все светила — планеты», т. е. суждение, противоречащее выводу:
Все планеты обращаются вокруг солнца.
Все светила—планеты.
Посылки эти образуют посылки правильного вывода по первой фигуре. Самый вывод получается, очевидно, по модусу Barbara:
Все планеты обращаются вокруг солнца. | М—Р |
Все светила—планеты. | S—М |
————————————————— | ——— |
Все светила обращаются вокруг солнца. | S—P |
Сравним теперь полученный нами новый вывод с меныцей посылкой первоначального силлогизма: «некоторые светила не обращаются вокруг солнца».Очевидно, вывод этот противоречит меньшей посылке.
Отсюда, естественно, заключаем, что наше допущение, будто «все светила — планеты», ложно, так как оно противоречит одной из принятых нами посылок. Но это значит, что должно быть истинным суждение, противоречащее сделанному допущению, т. е. суждение: «некоторые светила — не планеты».
Итак, мы убедились в истинности вывода по второй фигуре посредством сведения этого вывода к выводу по первой. Сведение это было необходимо для того, чтобы убедиться в нелепости суждения, противоречащего выводу.
Этот приём сведения называется «reductio ad absurdum» — «приведением к нелепости». Посредством этого приёма сводятся к выводам по первой фигуре: 1) модус Ваrосо второй фигуры и 2) модус Bocardo третьей. Буква r в названиях этих модусов показывает, что в них сведение к выводу по первой фигуре достигается, посредством reductio ad absurdum. Буквы В, С, D, F в названиях модусов второй и третьей фигур показывают, что после сведения модусы эти превращаются соответственно в модусы Barbara, Celarent, Darii, Ferio первой фигуры. Буквы s и р, стоящие в названиях модусов второй и третьей фигур после гласных, указывают, что для сведения посылка, обозначенная этими гласными, должна быть обращена. При этом буква s показывает, что при обращении количество посылки остаётся прежнее, а буква р — что при обращении общая посылка становится частной.
Например, при сведении модуса Cesare второй фигуры, мы, взглянув на название модуса Cesare, сразу видим, что после сведения должен получиться модус Celarent первой фигуры (на это указывает буква С в слове Cesare), что само сведение должно быть произведено путём обращения большей посылки (на это указывает буква s, поставленная после е, знака большей посылки) и что бо́льшая посылка остаётся после обращения общей (это видно из того, что после е стоит не р, a s). И действительно, вывод по второй фигуре модуса Cesare
Споровые растения не имеют цветов.
Злаки — растения, имеющие цветы.
—————————————
Злаки — не споровые растения.
сводится к выводу по первой фигуре модуса Celarent:
Растения, имеющие цветы, — не споровые растения.
Злаки — растения, имеющие цветы.
—————————————
Злаки — не споровые растения.