ЛОГИКА — страница 67 из 87

Все эти рассуждения Декарта представляли ряд дедуктивных выводов из догадки Торичелли. Необходимо было проверить, насколько согласуются с этими выводами действительные факты. Эта проверка была произведена Перье.

Изложенная история развития теории барометра представляет прекрасный пример взаимной связи индукции и дедукции. От найденных путём индукции, обычно ещё несовершенных и неточных, обобщений — через следствия этих обобщений, выведенные путём дедукции, — к проверке этих следствий посредством новых опытов и новых индукций — таков обычный путь научного исследования.

Оценка вероятности индуктивных умозаключений

§ 15. Из сравнения индуктивных выводов с дедуктивными было выведено, что, кроме полной индукции, дающей достоверные заключения, все остальные виды индукции дают заключения вероятные.

Различие это, само по себе взятое, не решает, однако, вопроса о сравнительной научной ценности дедуктивных и индуктивных выводов. Правда, достоверность всегда остаётся выше вероятности. Однако вероятность может иметь различные степени. При известных условиях, степень вероятности может настолько возрастать, что практически вероятность может неограниченно приближаться к достоверности.

Так как индуктивные выводы дают, вообще говоря, вероятное знание, то научное значение этих выводов, очевидно, будет определяться степенью вероятности, достижимой для них в каждом отдельном случае и в каждом виде индукции.

Отсюда следует, что при оценке научного значения индукции необходимо познакомиться, во-первых, со способом, посредством которого может вообще производиться определение степени вероятности, во-вторых, с особыми приёмами, посредством которых определяется степень вероятности в случае индуктивных выводов.

§ 16. Выше мы уже рассмотрели основной приём исчисления вероятности и невероятности наступления события. Но так как математическое исчисление вероятности, приём которого указан, должно, очевидно, иметь логическое основание и опираться на логическую формулу, приложением которой к частной области являются математические формулы, то должны быть установлены и это логическое основание и эта логическая формула. Последнее необходимо ещё и потому, что в ряде случаев вероятность не может быть точно исчислена математически, но всё же может быть характеризована с определённостью, достаточной для того, чтобы взвесить сравнительное значение той или иной возможности, между которыми распределяется решение поставленного вопроса.

§ 17. С логической точки зрения заключение о вероятности имеет посылкой суждение о некоторой группе предметов. И действительно, заключение это должно содержать в себе полное указание всех возможных случаев, между которыми распределяется испытание. Если в закрытом ящике находятся перемешанные друг с другом восемь красных и четыре синих шара и если поставлен вопрос, какого цвета будет шар, который мы вынем из ящика, то совершенно очевидно, во-первых, что вынутым может быть только или красный, или синий шар. Поэтому первым приближением к решению вопроса будет суждение: «Вынутый шар может быть либо красным, либо синим». Суждение это — разделительное суждение, перечисляющее все исключающие друг друга возможности, между которыми распределяется выбор.

Однако ограничиться одним этим суждением в данном случае, — когда мы знаем не только о том, какие цвета могут встретиться среди шаров, положенных в ящик, но знаем, кроме того, сколько находится в ящике красных и сколько синих шаров, — значило бы не довести исследование до возможной при данных условиях определённости.

Верно, разумеется, что для ответа на поставленный вопрос мы должны образовать разделительное, а не какое-либо иное суждение. Если бы суждение, выражающее степень нашего знания о том, какой шар будет вынут, не было разделительным, то наш вывод не указывал бы на то, что вся группа предметов имеет не один и тот же, но различные предикаты, т. е. что она имеет некоторое множество предикатов, между которыми распределяются все возможные случаи.

Но, с другой стороны, одного разделительного суждения, устанавливающего, что вынутый шар может оказаться или красным или синим, будет, конечно, недостаточно. Суждение это точно перечисляет возможные в данном случае, т. е. существующие в группе, предикаты. Однако оно ничего ещё на говорит о том, какое значение имеет каждый из предикатов сравнительно с другими в той же группе. Чтобы осветить и эту сторону вопроса, необходимо так преобразовать наше разделительное суждение о группе, чтобы, существовала возможность не только перенести предикат, указываемый каждым членом разделительного суждения, на предмет, о котором идёт речь (т. е. на шар, который должен быть вынут), но, кроме того, чтобы само разделительное суждение точно выражало при этом имеющееся у нас знание о сравнительном значении каждого предиката для всей группы.

Учтя это требование, разделим теперь мысленно всё количество шаров в ящике на группы по четыре шара в каждой и притом таким образом, чтобы в каждой из групп, получившихся в результате деления, оказались шары одного и того же цвета. Получатся две группы шаров красного цвета и одна группа синего цвета. Назовём одну четвёрку красных шаров «первой группой» красных шаров, другую —«второй». Тогда, очевидно, мы вправе высказать суждение: «Любой шар, какой может быть вынут из всего числа шаров, имеющихся в ящике, необходимо должен принадлежать или к первой группе красных шаров, или ко второй группе красных шаров, или к группе синих шаров».

Суждение это, как и предыдущее («Вынутый шар может быть либо красным, либо синим»), есть разделительное суждение о группе предметов. В нём — три предиката, которые полностью исчерпывают всё наше знание о группе и потому равноправны.

Образовав это суждение, мы можем теперь перенести определение всей группы, выраженное преобразованной разделительной посылкой, на тот шар, который должен быть вынут.

И в преобразованной форме, так же как и до преобразования, наше разделительное суждение выражает, что вынутый шар окажется либо красным, либо синим. Обе первые группы, или четвёрки (красных шаров), выражают первую возможность, третья группа, или четвёрка (синих шаров), выражает вторую. Утверждение, что шар окажется красным, оправдается, если при доставании шара осуществится каждый из двух первых членов преобразованного нами разделительного суждения. Иными словами, утверждение это выражает шансы третьего члена нашего разделительного суждения. А так как права каждого случая, представленного четвёркой шаров одного и того же цвета, равны, то вероятность того, что истинным окажется первое суждение («вынут будет красный шар») так относится к вероятной истинности второго суждения («вынут будет синий шар»), как два относится к одному.

Теперь нетрудно характеризовать логический ход рассмотренного вывода о вероятности. Вывод этот — с точки зрения его логического типа или характера — есть не что иное, как умозаключение от группы предметов к отдельному предмету. При этом суждение о группе, обосновывающее перенос предиката на отдельный предмет, есть сложное разделительное суждение о составе группы. Суждение это не только исчерпывает все существующие в ней предикаты, но и характеризует сравнительное значение каждого из них в группе.

Характеризованная здесь логическая формула математических выводов о вероятности есть формула, охватывающая только простейшие выводы математической вероятности. При усложнении условий определения вероятности логическая формула выводов вероятности, не меняясь в существе, претерпевает соответствующее осложнение.

§ 18. Существуют, однако, и такие выводы о вероятности, в которых ход умозаключения совпадает с ходом выводов неполной индукции. Представим, например, случай, когда, доставая из закрытого ящика положенные в него шары различного цвета, мы не знаем наперёд ни того, какого цвета шары имеются в ящике, ни того, сколько имеется в ящике шаров каждого цвета. Представим, что вопрос идёт уже не о том, каким по цвету окажется вынутый шар, а о том, какой цвет является господствующим во всей данной группе шаров и как относится число шаров одного цвета к числу шаров всех других цветов.

Поставленная таким образом задача явно отличается от предыдущей. В предыдущей нам было наперёд известно, во-первых, общее число шаров в ящике, во-вторых, было известно, сколько из этого общего числа шаров имеется красных шаров и сколько синих. Вопрос состоял в определении степени вероятности как того, что первый вынутый шар окажется красным, так и того, что он окажется синим.

Напротив, вторая задача является обратной по отношению к первой. Здесь неизвестно ни общее число шаров в ящике, ни распределение этого числа между группами по цвету. Требуется определить, какого цвета шаров окажется всего больше в группе и в каком отношении число этих шаров будет находиться к числу шаров всех других цветов.

Первая задача решалась, как мы видели, посредством исчисления вероятности, основанного на разделительном суждении, точно выражающем всё наше знание о группе, и на переносе определения группы, выраженного разделительным суждением, на отдельный предмет.

Во второй задаче мы, очевидно, не можем сразу сформулировать, как это было в предыдущем случае, разделительное суждение, которое точно выражало бы наше знание о группе предметов. Однако и в этом случае возможно приближение к такому знанию. Для этого станем вынимать один за другим шары из ящика таким образом, чтобы условия каждого отдельного доставания были по возможности разнообразны, т. е. чтобы каждый раз мы вынимали шар из различных частей ящика.

Если условия доставания шаров будут достаточно разнообразны, то, разложив шары по группам так, чтобы в каждую группу входили шары одного и того же цвета, и определив как общее число уже вынутых шаров, так и число шаров каждого цвета, мы можем с известной степенью вероятности ответить не только на вопрос, какого цвета шаров имеется больше всег