Если говорить кратко, бензодиазепины – это вид депрессантов. Многие, вероятно, слышали, что алкоголь – это тоже депрессант. Сразу представляется такая картина: человек сидит в баре в одиночестве и плачет над стаканом с выпивкой. На самом деле депрессанты не имеют отношения к грусти. Это вещества, которые подавляют, то есть замедляют, основные функции организма. Депрессанты должны ассоциироваться не со словом грусть, а со словом медлительность. Медлительность – например, проблемы с ходьбой. Запоздалая реакция. Сонливость. Конкретно бензодиазепины тормозят работу центральной нервной системы. Это, в свою очередь, ведет к потере способности формировать новые воспоминания, поскольку оказывается воздействие на биохимические процессы в мозге.
Что же именно вызывает амнезию при принятии бензодиазепинов? По словам нейробиолога Даниэля Беракоча из Университета Бордо во Франции[60], бензодиазепины известны главным образом как вещества, негативно сказывающиеся на восприятии. Это означает, что они препятствуют синтезу протеинов, необходимых для запечатления воспоминаний, как и вещества, использованные учеными во время описанных выше экспериментов. Кроме того, считается, что бензодиазепины способны вызвать только антероградную амнезию, но не ретроградную, то есть они почти никак не сказываются на воспоминаниях о событиях, произошедших до их поступления в организм, но могут серьезно нарушить формирование воспоминаний о том, что происходит после.
Если вы только что воскликнули: «Больше биологии!», я не могу вам в этом отказать. Если подробнее рассмотреть принцип действия бензодиазепинов, можно обнаружить, что, по-видимому, они усиливают действие нейромедиатора ГАМК (гамма-аминомасляная кислота). Согласно обзорной статье, опубликованной в 2006 г. Даниэлем Беракоча, «если говорить конкретно, успокоительный эффект бензодиазепинов и вызываемая ими антероградная амнезия в основном происходят в результате действия ГАМКА-рецепторов, содержащих субъединицы α1. Для тех, у кого нет ученой степени в области медицины: он имеет в виду, что нарушения работы памяти связаны с изменениями чувствительности в тех частях синапса, которые реагируют на ГАМК. Мы снова видим, что изменения работы синапсов, вероятно, влияют на нашу способность формировать какие бы то ни было воспоминания.
В условиях типичного эксперимента, как, например, в ходе исследований памяти, проводившихся с 1990-х гг. французским ученым Пьером Видалье[61], действие бензодиазепинов обычно изучается следующим образом. Участники принимают препарат, а затем пытаются выполнить какое-нибудь задание, например запомнить список слов или совокупность геометрических фигур. Так как бензодиазепины никак не сказываются на кратковременной памяти, часто почти незаметно, что человек находится под их воздействием, потому что он мыслит и ведет себя абсолютно нормально. Однако если протестировать участников эксперимента через какое-то время, они не вспомнят, какие слова входили в список, или даже вовсе не вспомнят, что им этот список показывали. Точно так же, если в больнице перед операцией пациенту дают бензодиазепины, скорее всего, он забудет, о чем разговаривал с медсестрами, докторами и близкими перед, во время и сразу после операции.
Я испытала это на себе, когда в больнице мне сделали наркоз, а потом прооперировали гораздо быстрее, чем предполагалось. Как и ожидалось, после операции я пришла в себя, разговаривала и изъяснялась вполне связно, но не могла ничего запомнить. Мой молодой человек задавал мне одни и те же нелепые вопросы каждые несколько минут, чтобы посмотреть, осознаю ли я, что он их повторяет. Я этого не понимала. Каждый раз я отвечала так, будто он задал свой вопрос в первый раз. Кроме того, я, похоже, продолжала думать, что только что проснулась и что теперь все в порядке. Это интересный побочный эффект, проявляющийся при отсутствии способности запоминать недавнее прошлое, и то же самое происходит с людьми, страдающими от тяжелой амнезии в результате серьезной травмы. Мой парень даже дал мне блокнот, чтобы я записывала свои ответы на его вопросы, и переворачивал страницы, чтобы я не видела, что написала точно то же самое всего несколько минут назад. Разумеется, сама я всего этого не помню, но позднее он показал мне блокнот в качестве доказательства.
Итак, очевидно, что происходящими в мозге химическими процессами, которые так сильно влияют на нашу способность формировать воспоминания, можно манипулировать, вводя в организм определенные вещества. Но воспоминания – это не только биохимия. Воспоминания – это сети.
Мы преодолели тему биохимического взаимодействия крохотных элементов и теперь можем перейти к разговору о тех ответственных за память структурах, которые можно увидеть при помощи технологий нейровизуализации, например фМРТ, и которые могут активироваться в мозге живых существ. Теперь мы посмотрим на сами нейроны и физические связи между ними.
Когда вы переживаете какой-либо опыт, определенные части вашего мозга загораются, то есть активизируются, когда через них проходят небольшие электрические или биохимические заряды. Затем те же самые нейроны остаются ответственными за конкретные составляющие воспоминания об этом событии. Например, в формировании воспоминания об одном и том же событии могут принимать участие нейроны в зрительной коре, ответственные за хранение информации о том, что вы видели, нейроны в слуховой коре, сохраняющие данные о том, что вы слышали, и пара клеток в соматосенсорной коре, которые запоминают, что вы чувствовали. Таким образом, перед мозгом встает скорее задача по поиску связей между нейронами, которые вы активизировали при переживании запоминаемого опыта, чем по назначению новых нейронов, удобно собранных в одном месте для хранения целостного воспоминания. Это означает, что для изучения сложных воспоминаний нам необходимо изучить эти нейронные сети.
Гаэтан де Лавильон, ученый из Высшей школы промышленной физики и химии в Париже, и его коллеги придумали необычный подход к изучению этих сетей. Они захотели выяснить, возможно ли изменить нейронные связи в живом мозге, воздействуя на протеиновые структуры, лежащие в основе наших воспоминаний. В материалах, опубликованных в 2015 г.[62] в нейробиологическом научном журнале Nature Neuroscience, они описывают эксперимент, в ходе которого создавали воспоминания ранее неизвестными способами.
Для проведения эксперимента они вскрыли черепные коробки мышей и очень аккуратно подсоединили электрические провода к индивидуальным клеткам в центрах удовольствия и нескольких других частях мозга. Они хотели установить связь между так называемыми пространственными нейронами, также известными как нейроны решетки, нейроны места и т. д., и чувством удовольствия. В 2014 г. нейробиолог Джон О’Киф[63] из Университетского колледжа Лондона получил Нобелевскую премию за открытие нейронов места, которые действуют как внутренний GPS-навигатор и позволяют нам ориентироваться в пространстве, сохраняя только этот вид информации.
Гаэтан де Лавильон и его коллеги оставили проводки подсоединенными к мозгу мышей, пока те исследовали свое окружение, и отметили, какие клетки активизировались, когда мышь находилась в том или ином месте. Выделив эти конкретные клетки, сохраняющие информацию о местоположении, ученые начали за ними наблюдать. После, когда мыши уснули, исследователи ожидали увидеть, как те или иные клетки места спонтанно активизируются в мозге спящего животного. Заметив, что мышь видит сон об определенной локации, ученые посылали электрический разряд в центр удовольствия. Таким образом они создавали искусственное воспоминание, соединяя клетки места, хранящие информацию об определенном местоположении, с позитивными эмоциями.
Поведение мышей подтвердило успешность этой процедуры. Проснувшись, мыши стали проводить больше времени на том месте, которое ассоциировалось у них с приятными эмоциями, чем где бы то ни было еще, несмотря на то что ничего приятного там, в сущности, не происходило. На основе этого исследователи сделали вывод, что им удалось внушить мышам ложное воспоминание, посредством воздействия на физические структуры в их мозге.
Стив Рамирез и ныне покойный Сюй Лю совместно с коллегами из Массачусетского технологического института проводили похожие эксперименты, чтобы выяснить, удастся ли им создать искусственные связи между фрагментами воспоминаний, если направить в мозг мышей лазерные лучи. В исследовании, опубликованном в 2013 г. в американском научном журнале Science[64], они пишут: «Нам удалось внушить мышам ложное воспоминание, используя оптогенетику для воздействия на клетки гиппокампа, несущие соответствующие энграммы». Оптогенетика – это область науки, изучающая, как при помощи света можно контролировать нейроны, обладающие генетической светочувствительностью. Для этого к нейронам, когда они активизируются, прикрепляется светочувствительный протеин под названием канальный родопсин-2. К примеру, можно заставить мышь запомнить определенное местоположение, а затем прикрепить протеин к конкретным клеткам, отвечающим за это воспоминание. Теперь эти клетки можно включать и выключать, используя голубой свет. Все равно что прикрепить к нейронам выключатель.
Рамирез и его коллеги обнаружили, что, активизируя небольшое количество конкретных нейронов в мозге мышей, можно активировать определенные воспоминания. Им удалось спровоцировать ошибки в памяти животных, объединив старые воспоминания с новыми ситуациями, то есть создать ложные воспоминания. Мыши, которые до этого научились ассоциировать страх боли с одним окружением, из-за ложных воспоминаний испытывали этот страх и в других обстоятельствах. Они стали ошибочно ассоциировать боль с окружением, которое на самом деле ничем им не угрожало, то есть произошло противоположное тому, что случилось во время эксперимента со спящими мышами, которых заставляли ассоциировать определенное место с чувством удовольствия.