Лысенко был прав! — страница 112 из 123

Через АГ проходит, по крайней мере, три потока синтезированных клеткой белков, предназначенных не для цитоплазмы: поток гидролитических ферментов в отдел лизосом, поток выделяемых белков, которые накапливаются в секреторных вакуолях, и выделяются из клетки только по получении специальных сигналов, поток постоянно выделяемых секреторных белков, потом мембранных белков для эндосом, лизосом и плазматической мембраны. Следовательно, должен быть какой-то специальный механизм пространственного разделения этих разных белков и их путей следования. В цис- и средних зонах стопки мембранных дисков все эти белки идут вместе без их разделения, хотя они и модифицируются раздельно в зависимости от их олигосахаридных маркеров.

После того, как белки и липиды, прибывшие и включенные в состав АГ, обработаны ферментами гликозидазами и их первичная сортировка осуществлена, они должны быть отправлены к 4 различным местам (Собственно разделение белков, их сортировка, происходит в так называемом пост-Гольджиевом сплетении и этот процесс расшифрован не до конца). Во-первых, они отправляются на базолатеральную плазматическую мембрану, которая и является основой плазматической мембраны в неполярных клетках. В полярных клетках наряду с базолатеральной (то есть расположенной в основании и по бокам клетки) существует и так называемая апикальная (или верхушечная) плазматическая мембрана, расположенная на верхушке клетки и смотрящая не в межклеточную среду организма, а вовне. Кроме этих двух станций назначения, часть белков и липидов направляются к эндосомам и лизосомам в составе специальных мембранных переносчиков. Переносчики транспортируют специальные высоко гликозилированные белки, способные в кислой среде противостоять действию агрессивных лизосомальных ферментов-гидролаз. Лизосомные ферменты переносятся от комплекса Гольджи до эндосом и лизосом с участием особого белка, называемого рецептором маннозо-6-фостата. Он концентрируется с помощью клатринового комплекса и адапторного комплекса один на мембранах и цистернах транс-сплетения. Но об этом ниже.

От АГ исходит поток переносчиков, связанный с постоянной, или так называемой конститутивной секрецией. Так фибробласты выделяют большое количество гликопротеидов и муцинов, входящих в основное вещество соединительной ткани. Многие клетки постоянно выделяют белки, способствующие связыванию их с субстратами, постоянно идет поток мембранных пузырьков к поверхности клетки, несущие элементы гликокаликса (полисахаридного покрытия клеток) и мембранных гликопротеидов. Этот поток выделяемых клеткой компонентов не подлежит сортировке в рецепторной транс-системе аппарата Гольджи. Первичные вакуоли этого потока также отщепляются от мембран и относятся по своей структуре к окаймленным вакуолям, содержащим клатрин.

Транспорт к базолатеральной плазматической мембране осуществляется следующим образом. После слияния с эндосомальным отделом транссети мембранный участок, содержащий секретируемый белок, превращается в транспортер, предназначенный для доставки белка к плазмалемме. При этом из после-Гольджиевого сплетения вытягивается трубочка по направлению к плазматической мембране. Образуются тубулярновезикулярные агрегаты, которые участием моторного белка кинезина перемещаются по микротрубочкам к плазмалемме и сливаются с ней с помощью соответствующих СНАРЕ-белков. Движение секретируемого белка вдоль трубочки будет выглядеть как перемещение светящегося шарика вдоль менее ярких светящихся, описанного на живых клетках. Наличие связи создает основу для ситуации, когда одна длинная эндосомальная или вытягиваемая трубочка может временно соединять плазмалемму и эндосому.

V.6. ЭНЗИМАТИЧЕСКИЕ ИЗМЕНЕНИЯ БЕЛКОВ И ЛИПИДОВ В АГ

В цис-зону аппарата Гольджи синтезированные в эндоплазматической сети белки попадают после первичного гликозилирования и редукции там же нескольких сахаридных остатков. В конечном итоге все белки там имеют одинаковые олигосахаридные цепи, состоящие из двух молекул N-ацетилглюкозамина, шести молекул маннозы. В цис-цистернах начинается вторичная модификация олигосахаридных цепей и их сортировка на два класса. В результате олигосахариды на гидролитических ферментах, предназначенных для лизосом (богатые маннозой олгосахариды), фосфорилируются, а олигосахариды других белков, направляемых в секреторные гранулы, или к плазматической мембране, подвергаются сложным превращениям, теряя ряд сахаров и присоединяя галактозу, N-ацетилглюкозамин и сиаловые кислоты. При этом возникает специальный комплекс олигосахаридов.

Такие превращения олигосахаридов осуществляются с помощью ферментов — гликозилтрансфераз, входящих в состав мембран цистерн АГ. Так как каждая зона в стопках имеет свой набор ферментов гликозилирования, то гликопротеиды как бы по эстафете переносятся из одного мембранного отсека (“этажа” в стопке цистерн диктиосомы) в другой и в каждом подвергаются специфическому воздействию ферментов. Так в цис-участке происходит фосфорилирование манноз в лизосомных ферментах и образуется особая маннозо-6-группировка, характерная для всех гидролитических ферментов, которые потом попадут в лизосомы.

В средней части диктиосом протекает вторичное гликозилирование секреторных белков: дополнительное удаление маннозы и присоединение N-ацетилглюкозамина. В транс-участке к олигосахаридной цепи присоединяются галактоза и сиаловые кислоты.

В аппарате Гольджи клеток животных происходит синтез длинных неразветвленных полисахаридных цепей глюкозаиногликанов. Один из них, гиалуроновая кислота, входящая в состав внеклеточного матрикса соединительной ткани, содержит несколько тысяч повторяющихся дисахаридных блоков. Многие глюкозаиногликаны ковалентно связаны с белками и образуют протеогликаны (мукопротеины). Такие полисахаридные цепи модифицируются в аппарате Гольджи и связываются с белками, которые в виде протеогликанов секретируются клетками. В аппарате Гольджи происходит также сульфатирование глюкозаиногликанов и некоторых белков.

В аппарате Гольджи растительных клеток происходит синтез полисахаридов матрикса клеточной стенки (гемицеллюлозы, пектины). Кроме того, диктиосомы растительных клеток участвуют в синтезе и выделении слизей и муцинов, в состав которых входят также полисахариды. Синтез же основного каркасного полисахарида растительных клеточных стенок, целлюлозы, происходит на поверхности плазматической мембраны.

Гликолитические ферменты аппарата Гольджи относятся к категории белков мембранных второго типа. Если мембранные белки первого типа отличаются тем, что их С-конец смотрит в цитоплазму, а N-конец в просвет пластинчатого комплекса, то белки второго типа характеризуются тем, что у них положение С- и N-концов противоположное. Их С-конец смотрит в просвет, а N-конец — в цитоплазму. Второй важной особенностью гликозидаз пластинчатого комплекса является тот факт, что их цитоплазматический конец очень короткий. Часто он представлен цепочкой из 5–7 аминокислот. Третьей особенностью вышеуказанных гликозидаз является наличие четких границ той гидрофобной зоны, которая погружена непосредственно в липидный бислой. Кроме того эта гидрофобная цепочка очень часто содержит ароматические аминокислоты, которые делают рельеф их гидрофобной поверхности очень неровным. Поэтому когда эти гидрофобные сегменты оказываются в липидном бислое, в котором много холестерола, делающего бислой упорядоченным, возникает энергетический дисбаланс, свободная энергия системы становится выше обычного и поэтому эти белки из такого липидного бислоя вытесняются.

Если посмотреть на концентрацию гликозидаз пластинчатого комплекса в мембранах Гольджи и сравнить с таковой в мембранах эндоплазматической сети, где они синтезируются, то разница в концентрации получится довольно внушительной — не менее 20 раз, а часто и больше. Это свидетельствует о том, что ферменты Гольджи концентрируются в пластинчатом комплексе с чрезвычайно высокой эффективностью. Хотя проведено значительное количество исследований, посвященных этому вопросу, тем не менее, ясности в этом вопросе нет. Прежде всего, оказалось, что для выхода из эндоплазматической сети гликозидазы требуют наличия фунции коатомера 2 (КОП2). Те 2 или 3 аминокислоты, содержащие щелочные остатки — это обычно аргинин или лизин — и расположенные сразу же за гидрофобным внутри мембранным сегментом, взаимодействуют с компонентами КОП2 и если эти аминокислоты удалить, то гликозидазы не могут покинуть цистерны эндоплазматической сети. Другим интересным свойством гликозидаз, расположенных большей частью в цистернах, которые прилежат к транс стороне стопки, является их зависимость их положения от длины, но не от аминокислотного состава, гидрофобного сегмента (важно, однако, чтобы аминокислоты, которые его образуют, были гидрофобными, а не гидрофильными).

Если с помощью методов молекулярной биологии длина этого гидрофобного сегмента, например у галактозил-трансферазы или сиалил-трансферазы, увеличивалась, то мутантный белок-гликозидаза покидала цистерны аппарата Гольджи и оказывалась на плазматической мембране. Более того, если длина гидрофобного трансмембранного сегмента сиалил-трансферазы чуть-чуть (важно, чтобы она была не меньше длины сегментов, погруженных в бислой липидов, у мембранных белков эндоплазматического ретикулума, который обладает наиболее тонкой мембраной, если это требование не выполняется, то белок просто не включается в мембраны и оказывается растворимым белком) уменьшалась, то новая измененная сиалил-трансфераза перемешалась ближе к цис-стороне аппарата Гольджи.

Последняя цистерна контактирует с эндосомами, имеющими существенно более высокую концентрацию холестерина. Это ведет к диффузии холестерина в транс цистерну, который вытесняет гликоферменты из данной цистерны в более проксимальную с менее толстой мембраной. Диффундируя по мембранам пластинчатого комплекса, холестерол может инициировать дестабилизацию тубулярной связи с эндоплазматической сетью, стимулировать процесс созревания цистерн и вытеснения из транс-цистерн остаточных количества резидентных (то есть располагающихся здесь) белков, что способствует превращению транс-цистерн в мембранные трубочки.