Лысенко был прав! — страница 16 из 123

2.3. ПЕРЕОТКРЫТИЕ "ЗАКОНОВ" МЕНДЕЛЯ

В 1900 г. в одном и том же томе Записок Немецкого ботанического общества (Proceedings of the German Botanical Society) появились три статьи, в которых были независимо переоткрыты "законы" наследования Менделя. Независимо друг от друга Гуго ДеФриз (Голландия), Карл Эрих Корренс (Германия) и Эрих фон Чермак (Австрия) переоткрыли те же закономерности, которые описаны Г. Менделем в 1865 г. Ими были подтверждены основные выводы о независимом наследовании признаков и о численных соотношениях при «расщеплении» признаков в потомстве. Переоткрытие законов Менделя произошло в трех разных странах, которые одновременно обнаружили забытую работу Менделя. Они вновь опубликовали ее в 1901 году. Поэтому становление формальной генетики как науки связывают с 1900 г., когда работы Менделя вновь привлекли внимание.

В 1902 г английский врач А. Гаррод, исследуя родословные семей, пришел к выводу, что алкаптонурия, болезнь, связанная с нарушением обмена веществ (нарушением "биохимии", то есть), передается по наследству. Открытие английского врача было признано и оценено только через 30 лет.

Слово генетика появилась в 1906 г. когда английский натуралист У. Бэйтсон (W. Bateson) сообщил участникам международного конгресса ботаников, что новая и хорошо развитая область физиологии сформировалась. Он назвал эту новую область, эту научную дисциплину генетикой.

В 1909 г. для обозначения менделевского фактора наследственности был предложен термин «ген». Термин "ген" предложил датский исследователь В. Иоганнсен. В 1909 г он написал: "свойства организмов обуславливаются особыми, при известных обстоятельствах отделимыми друг от друга и в силу этого до известной степени самостоятельными единицами или элементами в половых клетках, которые мы называем генами. В настоящее время нельзя составить никакого определенного представления о природе генов; мы можем лишь довольствоваться тем, что подобные элементы действительно существуют. Не являются ли они химическими образованиями ― об этом мы пока не знаем решительно ничего". В том же году была открыта цитоплазматическая наследственность.

2.4. СТАНОВЛЕНИЕ ДОГМЫ О НЕИЗМЕННОСТИ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ

Из результатов, полученных Менделем, переоткрыватели Менделя сформулировали следующие выводы:

1) все гибридные растения первого поколения одинаковы и проявляют признак одного из родителей (о том, что такое случается, было известно до него);

2) среди гибридов второго поколения появляются растения как с доминантными, так и с рецессивными признаками в соотношении 3:

1 (явление очень редкое, известно не более десятка таких ситуаций, см. ниже);

3) два признака в потомстве ведут себя независимо и во втором поколении (редкое событие).

4) растения, проявляющие доминантные признаки, могут в скрытом виде нести задатки рецессивных (было известно до Менделя)

5) объединение мужских и женских гамет случайно в отношении того, задатки каких признаков несут эти гаметы (до сих пор не доказано).

Ещё раз подчеркну, что эти "законы" расщепления признаков (обратите внимание, не генов, а признаков) не были приведены самим Менделем в той своей статье. Эти законы были сформулированы авторами, переоткрывшими Менделя. Когда же Мендель стал проверять свои законы на другом растении ястребинке, он не смог ничего воспроизвести. Оказалось, что у этих растений нарушен половой процесс и они дают семена и без него. Но самое пикантное в том, что до сих пор число признаков, которые подчиняются "законам" расщепления Менделя очень мало.

Догма о неизменности наследственной информации начала складываться ещё до переоткрытия Менделя, через несколько лет после смерти Дарвина, в основном благодаря усилиям немецкого ученого Августа Вейсмана, которого и считают родоначальником неодарвинизма. В 80-е годы XIX-го века Август Вейсман (A. Weismann) предложил свою гипотезу, согласно которой в организме существуют два типа клеток: соматические и особая наследственная субстанция" названная им "зародышевой плазмой", которая в полном объеме присутствует только (!!!) в половых клетках. Было установлено, что признаки, возникающие под влиянием обычных внешних воздействий, т. е. благоприобретенные, не связаны с генами и не передаются по наследству. Вейсман показал, что если крысам из поколения в поколение отрубать хвосты, это не приводит к рождению бесхвостых крысят. В другом эксперименте черным мышам пересаживали яичники белых. У тех мышек, которым удавалось выжить после этой экзекуции, рождались белые мышата. На основании этих и других подобных экспериментов и был сформулирован главный принцип так называемого вейсмановского барьера: клетки тела (соматические клетки) не могут передавать информацию половым клеткам.

Вейсман прямо говорил в своей книге "Зародышевая плазма" (1893 г.), что приобретенные признаки могут передаваться лишь тогда, когда они вызывают изменения в наследственном веществе, расположенном в ядре клетки. Т. е. тезис о том, что генетики "считали, что приобретенные признаки НИКОГДА не передаются" может считаться неверным и искажающим суть взглядов ранних генетиков. Более того, пример по поводу ошибок в ДНК более подходит к парадигме ранних классических генетиков, т. к. ошибки синтеза ДНК есть изменение наследственного вещества. Тем более, что опыты с факторами, вызывающими химический, температурный и радиационный мутагенез, то есть вызывали мутации, были широко распространены. Им же потом было предположено, что зародышевая плазма должна составлять материал хромосом.

Работы Вейсмана и переоткрытие законов Менделя заложили основы формальной генетики и привели к возвеличиванию Менделя.

2.5. ОТКРЫТИЕ ХРОМОСОМ

Хромосомная теория наследования была сформулирована Бовери и Сэттоном в 1902 году. Т. Бовери представил доказательства в пользу участия хромосом в процессах наследственной передачи. Он показал, например, что нормальное развитие морского ежа возможно лишь при наличии всех хромосом. В 1902 году У. Сэттон дал цитологическое обоснование менделизму: диплоидный и гаплоидный наборы, гомологичные хромосомы, процесс конъюгации при мейозе, предсказание сцепления генов, находящихся в одной хромосоме, понятие о доминантности и рецессивности, а также аллельные гены ― все это демонстрировалось на цитологических препаратах, основывалось на точных расчетах менделевской алгебры и очень отличалось от гипотетических родословных древ, от стиля натуралистического дарвинизма XIX века.

В 1903 году ДеФриз первый постулировал существование рекомбинаций в хромосомах. Решающий вклад в развитие хромосомной теории внес американский ученый Морган.

В 1910 г. была открыта локализация наследственных факторов в хромосомах. Сделал это Т. Морган (1866–1945), и теория получила название «морганизм». Было установлено, что для каждого вида форма и число хромосом постоянны, что в ходе развития половых клеток происходят редукция хромосом ровно в два раза и восстановление их прежнего числа при оплодотворении. Морган доказал, что гены, находящиеся в одной хромосоме, передаются при скрещиваниях совместно, т. е. сцеплены друг с другом. Одна группа сцепления генов расположена в одной хромосоме. Веское подтверждение гипотезы о сцеплении генов в хромосомах Морган получил также при изучении так называемого сцепленного с полом наследования. Определив, что ген окраски глаз дрозофилы локализован в Х-хромосоме, и проследив за поведением генов в потомстве определенных самцов и самок, Морган и его сотрудники получили убедительное подтверждение предположения о сцеплении генов.

Некоторые положения хромосомной теории приобрели статус законов, среди них линейное расположение генов в хромосомах, представляющих из себя группы сцепленных генов, представление о том, что в процессе мейоза гомологичные хромосомы обмениваются частью своих генов путем кроссинговера. Хромосомная теория наследственности не была лишена элементов механицизма: ген представлялся неделимым, а изменения генов — мутации ― казались происходящими под действием чисто внутренних процессов. Скорее всего, именно в своей книге "Теория гена" Морган впервые использовал аллегорию "гены, как бусы на нитке"(202. С. 24).

Для изучения законов наследования Морган впервые использовал дрозофилы или мелкие плодовые мушки. Почему же именно мушки стали излюбленным объектом генетических исследований в сотнях лабораторий? Их легко раздобыть, они водятся повсеместно. Питаются соком растений, всякой плодовой гнильцой. Скорость размножения дрозофил огромна: от яйца до взрослой особи — десять дней. У них мало хромосом — всего четыре пары. В клетках слюнных желез мушиных личинок содержатся гигантские хромосомы, которые особенно удобны для исследований. Для генетиков важно и то, что дрозофилы подвержены частым наследственным изменениям. У дрозофилы было обнаружено большое количество разнообразных мутаций, т. е. форм, характеризующихся различными наследственными признаками. У нормальных, или, как говорят генетики, дрозофил дикого типа, цвет тела серовато-желтоватый, крылья серые, глаза темного кирпичнокрасного цвета, щетинки, покрывающие тело, и жилки на крыльях имеют вполне определенное расположение. У обнаруживавшихся время от времени мутантных мух эти признаки были изменены: тело, например, было черное, глаза белые или иначе окрашенные, крылья зачаточные и т. д. Часть особей несла не одну, а сразу несколько мутаций: например, муха с черным телом могла, кроме того, обладать зачаточными крыльями. С помощью мушки генетика к настоящему времени сделала множество открытий. Известность дрозофилы столь велика, что на английском языке издается ежегодник, ей посвященный, содержащий обильную разнообразную информацию. За выдающиеся работы в области генетики Морган был удостоен в 1933 году Нобелевской премии.

Мутагенное (ведущее к изменению последовательностей нуклеотидов в ДНК ― искусственные мутации Г. Мёллера) действие внешних факторов (лучей рентгена) было открыто в 1925-27 годах. Тогда же было предложено строить хромосомные карты.