А что же такое клетка? Сначала отмечу, что все организмы состоят из клеток, как бы кирпичиков живого. Клетку обычно определяют как элементарную единицу живого (7). Упрощенно клетки можно определить как фабрики по самовоспроизводству и самообновлению. Клетка представляет собой систему из множества различных взаимодействующих элементов, которая во всех своих проявлениях выступает как одно, как целое. Клетка единична, уникальна, а значит все клетки организма гомологичны друг другу, подобны своими основными свойствами, в том числе, и строением. Клетка может происходить только из клетки, поскольку только она является элементарной единицей. Клетка структурирована и, следовательно, вся совокупность биохимических реакций в клетке, «канализована» соответствующей структурой. Во-вторых, реальным действующим персонажем в клетке являются не сами макромолекулы (биополимеры), а их комплексы, причем уровень сложности этих комплексов в предельном случае представлен клеточными органеллами. И, наконец, «смысл» существования клетки заключается в поддержании и воспроизведении самое себя.
В Приложении I я дал научно-популярное описание того, как работает фабрика под названием клетка. Замечу, что фабрика эта не проще, чем настоящая фабрика, построенная человеком.
Если же идти по пути аналогий, то клетку можно представить в виде чебурека, заполненного очень концентрированным бульоном с большим количеством желатины. Стенки чебурека, сделаны из теста. В реальности клетка окружена двойным слоем липидов (что такое липиды ― см. Приложение I). Внутри очень концентрированного с множеством желатины, разваренного бульона плавают ядро (см. ниже) и другие органеллы, натянуты и постоянно натягиваются вновь толстые канаты (микротрубочки) и средней толщины канаты, более стабильные не разрушающиеся в течение жизни клетки (в клетке таким канатикам соответствуют так называемые промежуточные филаменты) и, наконец, динамичные быстро возникающие и исчезающие тонкие веревки (в клетке это актиновые филаменты). К толстым канатам и веревкам прикреплены маленькие моторчик, которые тянут по канатам мембранные вакуоли, наши макаронины, заглушенные с обеих сторон.
Чтобы нагляднее представить себе, как устроено ядро в эукариотических (то есть имеющих ядра) клетках, я предлагаю проделать следующий опыт. Взять обычный надувной шарик и намазать его толстым слоем масла. Затем, взять узкое металлическое или пластиковое кольцо и расположить его приблизительно посредине тела шарика. Затем надо часть шарика, на которой имеется горлышко, навернуть на ту половину, где расположено его дно. После этого надо вывернутое горлышко завязать прочно ниткой. У нас получается нечто вроде сдутого мяча. Отличие в том, что отверстие, соединяющее внутренность данного вывернутого шарика с окружающим воздухом очень узкое. Используя это узкое кольцо можно в этот шарик с двойными стенками запихать много скрученных двойных бумажных перфолент. Масло между двумя резиновыми листками содержимое просвета ядерной оболочки, а узкое горлышко будет играть роль ядерной поры. Теперь достаточно представить себе, что на самом деле ядерная пора не одна, а их много (хотя они устроены аналогично) и модель ядра готова.
На самом деле, ядерная оболочка образована из двух мембран, образованных каждая двойным слоем липидов. Бислой липидов проницаем для воды, поэтому-то резинка и не подходит. Кроме того, двойной слой липидов не проницаем для заряженных и крупных частиц, но проницаем для воды. Поэтому шарик ядерной оболочки лучше представить, как сделанный не из резинки, а из макарон. Для мысленного моделирования мембранных органелл, образованных стенкой из двойного слоя липидов, лучше подходит разваренная макаронина, закрытая с обеих сторон. Слой разваренного теста не даст крупинкам муки проникнуть внутрь макаронины, но вода туда проходить может.
Чтобы лучше представить себе, как устроен бислой липидов, возьмите макароны и минуты-полторы варите их в воде, но не до конца. Затем сломайте макаронину и вы увидите, что стенка макаронины снаружи и со стороны просвета образована двумя слоями разваренного теста, между которыми остается слой сухого, ещё не адсорбировавшего воду теста. Разваренные слои теста будут моделировать гидрофильные головки липидов, расположенные снаружи от двойного слоя гидрофобных цепей жирных кислот, которые в нашем случае представлены одним слоем сухого теста.
Если идти по пути тех же макаронных ассоциаций, то пластинчатый комплекс Гольджи, который ответственен за присоединение к белкам сахарозных остатков и за сортировку по предназначению транспортируемых в клетке белков, может быть представлен в виде раздутых, а затем сдавленных макаронины, которые приобрели форму плоских дисков. Большие заглушенные с обеих сторон, сплюснутые и имеющие форму дисков макаронины располагаются в виде стопок, то есть один диск положен на другой диск того же самого размера и формы. Диски сложены в стопки. Всего в стопке бывает 5–8 дисков, но это число варьирует в зависимости от клетки. Это и есть диктиосома или пластинчатый комплекс Гольджи.
С точки зрения наших макаронных моделей, клетка бактерий ― это огромная макаронина, с заглушенными концами и заполненная очень концентрированным бульоном (например, с большим количеством желатины). Снаружи макаронина либо окутана снаружи слоем ваты, которая образует клеточную стенку (модель так называемой Грам-положительной бактерии).
Грам-отрицательные бактерии слоя ваты не имеют. Внутри макаронины плавает скомканная двойная спираль бумажной компьютерной перфоленты (Более подробное научно-популярное описание особенностей строения клеток растений и бактерий читатель найдет в Приложении I.17).
3.1. ОСТАТКИ ФОРМАЛЬНОЙ ГЕНЕТИКИ
А теперь давайте проследим путь, который проходит наследственная информация от последовательности нуклеотидов до проявления признака.
В начале позволю себе привести длинную цитату из книги Докинса (28), чтобы описать основные представления формальной генетики. Как образно пишет Докинс, "молекула ДНК представляет собой длинную цепь из строительных блоков, которыми служат небольшие молекулы — нуклеотиды. Подобно тому, как белковые молекулы — это цепи из аминокислот, ДНК — это цепи из нуклеотидов. Молекула ДНК слишком мала, чтобы ее можно было увидеть, но ее точная структура была установлена с помощью остроумных косвенных методов. Она состоит из пары нуклеотидных цепей, свернутых вместе в изящную спираль — ту самую «двойную спираль», «бессмертную спираль». Нуклеотидные строительные блоки бывают только четырех типов, сокращенно обозначаемых буквами А, Т, Ц и Г. Они одинаковы у всех животных и растений. Различна лишь их последовательность. Блок Ц из ДНК человека ничем не отличается от блока Ц улитки. Но последовательность строительных блоков у данного человека отличается не только от их последовательности у улитки. Она отличается также, хотя и в меньшей степени, от последовательности блоков у любого другого человека (за исключением особого случая — однояйцовых близнецов).
Наша ДНК обитает в нашем теле. Она не сконцентрирована в какой-то одной части тела, но распределена между всеми клетками. Тело человека состоит в среднем из 1015 клеток и, за известными исключениями, которыми мы можем пренебречь, каждая из этих клеток содержит полную копию ДНК, свойственной данному телу. Эту ДНК можно рассматривать как набор инструкций, записанных с помощью нуклеотидного А, Т, Ц, Г — алфавита и указывающих, как должно строиться тело. Представим себе громадное здание, где в каждой комнате стоит шкаф, содержащий созданные архитектором чертежи, по которым это здание строилось. В клетке таким «шкафом» служит ядро. «Чертежи» для человеческого тела составляют 46 томов; у других видов число томов иное. Эти «тома» называются хромосомами. Под микроскопом они имеют вид длинных нитей, в которых в определенном порядке расположены гены. Нелегко, да и, вероятно, даже бессмысленно, решать, где кончается один ген и начинается другой. К счастью, как мы вскоре увидим, здесь это не имеет значения.
Молекулы ДНК несут две важные функции. Во-первых, на их основе белки создают их точные копии. Такое копирование происходило непрерывно с тех пор, как возникла жизнь, и надо сказать, что молекулы ДНК достигли в этом совершенства. Взрослый человек состоит из 1015 клеток, но в момент зачатия он представлял собой всего одну клетку, наделенную одной исходной копией «чертежей». Эта клетка разделилась на две, причем каждая из возникших двух клеток получила свою собственную копию чертежей. В результате последовательных делений число клеток увеличивается до 4, 8, 16, 32 и т. д. до миллиардов. При каждом делении содержащиеся в ДНК чертежи точно копируются, практически без ошибок.
Говорить о дупликации ДНК — это полдела. Но если ДНК действительно представляют собой чертежи для построения организма, то, как эти планы реализуются? Как они переводятся в ткани организма? Это подводит меня ко второй важной функции ДНК. Она косвенно контролирует изготовление молекул другого вещества — белка. Гемоглобин, упоминавшийся в гл. 2, — всего одна из огромного множества белковых молекул; закодированная в ДНК информация, записанная с помощью четырехбуквенного нуклеотидного алфавита, переводится простым механическим способом на другой, аминокислотный, алфавит, которым записывается состав белковых молекул.
Если два гена, подобно генам карих и голубых глаз, — конкуренты, стремящиеся занять одно и то же место в данной хромосоме, их называют аллельными друг другу, или аллелями. Для наших целей слово «аллель» — синоним слова «соперник». Представим себе том чертежей в виде скоросшивателя, так что листы можно вынимать и менять местами. В каждом томе 13 должен быть лист 6, но существует несколько возможных листов 6, которые могли бы оказаться в скоросшивателе между листами 5 и 7. Один из них диктует «голубые глаза», другой возможный лист — «карие глаза». В данной популяции могут быть и другие варианты, которые диктуют другие глаза, например зеленые. Так, место листа 6 в 13-х хромосомах, разбросанных по всей популяции, может занимать любой из полудюжины альтернативных аллелей. У каждого же данного человека имеется только две хромосомы, соответствующие тому 13. Поэтому в месте, отведенном листу 6, у него может быть максимум два аллеля. Это могут быть две копии одного и того же аллеля, как у голубоглазого индивидуума, или же любые два аллеля из полудюжины альтернатив, имеющихся в популяции в целом.