Лысенко был прав! — страница 22 из 123

Как было сказано выше, чертежи для построения тела человека составляют 46 томов. На самом деле это сверхупрощение. Правда довольно причудлива. Эти 46 хромосом состоят из 23 пар хромосом. Можно было бы сказать, что в ядре каждой клетки хранятся два альтернативных набора по 23 тома чертежей в каждом. Назовите их том 1а и том 16, том 2а и том 2б и т. д. до тома 23а и тома 23б. Конечно, цифры, используемые мною для обозначения томов, а затем листов, совершенно произвольны.

Мы получаем каждую хромосому в целости и сохранности от одного из наших двух родителей, в семеннике или яичнике которых она была собрана. Тома 1а, 2а, За, поступают, скажем, от отца. Тома 16, 26, 36, … поступают от матери. Это очень трудно осуществить на практике, но теоретически можно разглядеть под микроскопом в любой из клеток человека 46 хромосом и отделить 23 материнские хромосомы от 23 отцовских.

Парные хромосомы не проводят всю свою жизнь, физически соприкасаясь или даже находясь поблизости одна от другой.

Почему в таком случае их называют «парными»? А потому, что каждый том, полученный от отца, можно считать, лист за листом, прямой альтернативой одного определенного тома, полученного от матери. Например, 6-й лист тома 13а и 6-й лист тома 13б могут касаться цвета глаз; возможно, в одном значится «голубые», а в другом «карие».

Иногда эти два альтернативных листа бывают идентичны, а иногда, как в нашем примере с цветом глаз, они различаются. Что же делает тело, если они дают противоречивые «рекомендации»? Решения могут быть разными. Иногда одна инструкция перевешивает другую. Если это касается цвета глаз у человека, то глаза будут карие: инструкции, детерминирующие голубые глаза, при построении тела останутся без внимания, хотя это не препятствует их передаче последующим поколениям. Ген, который игнорируется, таким образом, называется рецессивным, а противостоящий ему ген — доминантным. Ген карих глаз доминирует над геном голубых глаз. Глаза человека будут голубыми только в том случае, если обе копии соответствующего листа

единодушно рекомендуют голубые глаза. Гораздо чаще в тех случаях, когда два альтернативных гена не идентичны, это приводит к своего рода компромиссу — тело создается по промежуточному или даже совершенно иному плану…" (конец цитаты)

Казалось бы очень краткая и понятная каждому выжимка из сведений, излагаемых в учебниках. Но на самом деле многое здесь уже устарело, а многое изначально было не верным. Поэтому я мне пришлось дать более современную трактовку о наследственной информации.

3.2. МОЛЕКУЛЫ НУКЛЕИНОВЫХ КИСЛОТ И ПЕРФОЛЕНТЫ

Для того, чтобы лучше понять, что такое ДНК, нуклеотиды, как организована цепь ДНК, как она упакована, как можно представить ДНК и весь процесс считывания и перевода наследственной информации на другие ее носители, то я предлагаю следующую аналогию. Если предельно упрощать, то ДНК похожа на бумажную перфоленту, которую раньше использовали для загрузки старых ЭВМ или компьютером. Перфолента делалась из прочной бумаги, почти картона. Рулон перфоленты вставлялся в считывающее устройство компьютера и компьютер регистрировал разное количество дырочек, получая дискретную информацию о программе. В рамках нашей аналогии перфоленты будут играть роль нитей ДНК (более подробно и научно я описал особенности процесса переработки информации в Приложении II).

Итак, представим себе, что ДНК есть скрученная перфолента, составленная из двух лент. На каждой перпендикулярно длине нанесены две или три дырочки, но под разными углами.

В дырки вставлены либо трубочки, либо штырьки, соответственно чуть меньшие по диаметры и входящие в трубочки. Тогда аденин будет кодироваться двумя дырками, в которые вставлены трубочки, а тимидин двумя дырками, в которые вставлены штырьки. Гуанин будет иметь вид трех дырочек с вставленными в них трубочками а цитозин три дырки со штырьками. Штырьки и трубочки расположены чуть под углом, так, что штырьки тимидина не могут быть вставлены в две трубочки гуанина.

Бумажная двойная перфолента ДНК, если она просто лежит в виде клубка, занимает очень большое пространство. Поэтому клетка ее наматывает на гантельки гистонов. Гантельки затем упаковываются в более крупные спирали, а из спиралей уже формируются хромосомы.

Запомните! Переписывание информации с ДНК на ДНК ― это РЕПЛИКАЦИЯ. Переписывание информации с ДНК на РНК ― это ТРАНСКРИПЦИЯ. Переписывание информации с мРНК на белок ― это ТРАНСЛЯЦИЯ.

Как идет считывание информации и копирование ДНК? Скрученная перфолента расплетается и по одной из лент движется небольшая машинка, синтезирующая свою бумажную перфоленту. Машинка как бы пальпирует, сколько дырочек на данном участке перфоленты и она синтезирует свою перфоленту, выбивая на своей перфоленте то количество дырочек, которые соответствует дырочкам на перфоленте ДНК.

При переносе информации на РНК есть одна особенность ― один нуклеотид заменен на другой, где вместо трех длинных трубочек на одном из нуклеотиде имеется две длинных и одна короткая. Кроме того перфолента РНК более неровная по краю где две ленты склеиваются, что делает склейку менее прочной. Поэтому при склеивании таких двух перфолент РНК двойная спираль оказывается менее прочной в местах склейки.

В ядре имеются специальные белковые машинки, которые считывают информацию с ДНК и склеивают новую молекулу незрелую мРНК из кусочков компьютерной перфоленты. В процессе прочтения эта машинка создает точную копию слов на ДНК из кусочков-мономеров РНК. Белковая машинка, совершающая транскрипцию, начинает свое чтение и склеивание магнитной перфоленты именно с участка, где записана информация, что именно это есть начало гена, то есть с промотора.

После того, как получена комплементарная перфолента, то есть предшественник матричной РНК (раньше ее называли информационная РНК. Она выйти из ядра не может, так как в ней много участков, которые не несут информации, как на твердом диске компьютера, где файл записывается на разных участках. Эти участки, не несущие полезной информации, надо вырезать. Поэтому перфолента РНК захватывается другой машинкой-сплайсомой и она, исходя из известных ей кодов, находит начало участка с шумом (этот участок называется интроном). Затем машинка захватывает еще несколько белков и довольно-таки сложным образом сначала отрезает ненужный участок, а потом склеивает остатки перфоленты РНК так, чтобы не сдвинулся порядок считывания. Если его сдвинуть на один нуклеотид, то бишь, на один рад перфораций, то будет совсем другой белок.

Итак, после того, как получена перфолента мРНК, она метится особым образом (например, условно ― красной краской), чтобы она могла выйти из ядра, а затем к обеим ее концам присоединяют некие головки, которые оберегают ленту мРНК от атак ферментов, стремящихся всю ленту порезать на части.

Такую обработанную и помеченную одиночную шероховатую перфоленту (модель мРНК) ядерные поры выпускают в цитоплазму и она склеивается с одной из двух составных частей рибосомы.

3.3. КАК СИНТЕЗИРУЕТСЯ БЕЛОК?

Синтез всех белков происходит в цитоплазме. Если мы представим цепь нуклеотидов ДНК в виде двойной закрученной картонной компьютерной перфоленты, склеенной из отдельных кусочков, а РНК ― в качестве одиночной перфоленты, но с более шероховатым краем, то цепь аминокислот можно представить в виде магнитной ленты. В цитоплазме есть особые машинки, рибосомы, переписывающие информацию с бумажной перфоленты мРНК на другую магнитную ленту. Но никогда информация не может быть переписана с магнитной ленты на перфоленту, так как с одной магнитной ленты можно написать миллионы перфолент.

Рибосома ― это машинка, которая склеивает уже не бумажную перфоленту, а магнитную ленту ― цепь аминокислот. Для записи информации на магнитной ленте уже можно использовать 20 букв, то есть 20 аминокислот. Но вариантов перфораций на бумажной ленте только 4. Поэтому каждая буква магнитной ленты полипептида кодируется 3 буквами на бумажной перфоленте ленте мРНК.

После того как в цитоплазму попадает перфолента мРНК, она встречается с половинкой рибосомы и временно склеивается с первой частичкой рибосомы, а потом уже к ней приклеивается вторая частичка рибосомы. В результате образуется полноценная машинка для переноса информации с бумажной перфоленты на магнитную ленту. Синтез белка всегда начинается с его азотсодержащего конца.

Рибосома пальпирует количество дырочек в первых трех рядах и активируется. К ней подплывают дощечки в виде кленовых листиков, которые связаны с аминокислотой, то есть с кусочком магнитного пластика. На конце листика имеется код из трех перфораций. Если один из концов листика соответствует дырочкам на бумажной перфоленте мРНК, то листик захватывается рибосомой. Затем рибосом подвигается на три ряда дырочек вдоль перфоленты. Она снова пальпирует следующие три ряда дырочек и снова активируется. Опять вокруг плавают кленовые листики. Они тыкаются в рибосому и идет проверка, нет ли соответствия столбиков и трубочек на перфоленте столбикам и трубочкам на кончике листика.

Если соответствие есть, то кусочек магнитного пластика, сидящий на кленовом листике транспортной РНК, приклеивается к кусочку пластика, который прикреплен ко второму кленовому листику. При этом первый кленовый листок транспортной РНК освобождается от захвата рибосомой и отплывает, но уже без своего кусочка магнитного пластика. Таким образом, у нас получилось уже цепь магнитной ленты из двух кусочков магнитного пластика. Далее все повторяется снова и снова и наша магнитная лента увеличивается в длину.

Генетический код работает следующим образом. На бумажной перфоленте каждая аминокислота (то есть кусочек магнитной ленты) записана комбинацией 3 из 4 возможных комбинаций трубочек и штырьков. Если, например, в кодоне три трубочки, то в машину открывается дверка для грузовичка, перевозящего аминокислоту аланин; если три круга, то фенилаланин и т. д.