Лысенко был прав! — страница 23 из 123

После того, как рибосома передвинется на определенное число шагов по перфоленте мРНК к началу той же перфоленты может прикрепиться другая рибосома, которая будет склеивать свою магнитную ленту. Так возникает полисома. Она имеет вид РНК перфоленты, на которой сидят несколько машинок-рибосом, состоящих из нанизанных на РНК перфоленту двух или более частичек, от которых вытягиваются в сторону склеивающиеся магнитные ленты.

Можно сказать, что грузовичок с транспортной РНК, въезжает во двор, сгружает аминокислоты и ее приваривают в виде сегмента цепи к формирующейся огромной подвижной цепи. Эта гнущаяся цепь и есть белок. Грузовички ― это транспортные РНК, двор ― это рибосома.

Если склеенный участок магнитной ленты содержит сигнал, который позволяет этому участку приклеиться к белку, называемому Сек61п, встроенному в мембрану эндоплазматической сети, то рибосома со своей магнитной лентой захватывается белком Сек61п и тогда начальный участок магнитной ленты проникает через гидрофильный канал, которые белок Сек16п вместе с другими белками образует сквозь двойной слой липидов мембраны эндоплазматической сети.

После того как магнитная лента проникла в просвет внутрь сети, специальный белок отрезает начальный ее кусочек, тот, где записан сигнальная информация и уже магнитная лента свободной болтается внутри ретикулума. Рибосома медленно склеивает магнитную ленту и лента вдвигается в просвет.

После окончания синтеза, когда на перфоленте мРНК появляется несколько триплетов, то есть троек из рядов перпендикулярных перфораций, не кодирующих ни одну из аминокислот, рибосома распадается и магнитная лента оказывается в просвете эндоплазматической сети. Если же перфолента мРНК не содержит сигнального участка, то магнитная лента остается в цитоплазме и образует цитоплазматический белок.

Куски магнитной ленты, не имеющие намагниченных участков, задерживаются внутри стенки макаронины и оказываются с ней связаны навсегда. Один кусок магнитной ленты обращен в цитоплазму, то есть в бульон, а другой ― внутрь макаронины. Та часть ленты, которая не имеет намагничивания, остается внутри стенки макаронины, и свертывается в трубочку.

Как полимеризуются аминокислоты, можно представить в виде работы детского магнитного конструктора ГеоМаг. Элементы геомага представляют собой магнитные металлические столбики. Они склеиваются под воздействием магнитного поля. Шарики могут присоединяться сбоку на столбик. Это как добавочные группы аминокислот. Эти элементы придают аминокислотам особые свойства, как, например, триптофан. Если нет шарика, то глицин и другие простые аминокислоты, если есть большой шарик, то триптофан или фенилаланин. Шарик приклеен к столбику силами магнитного поля. Шарик моделирует боковой вырост аминокислот. Именно этот вырост определяет свойства аминокислоты.

Далее магнитная лента должна быть упакована. Для этого используются уже упакованные магнитные ленты, специализированные на этой работе. Они помогают магнитной ленте образовать правильный клубок.

Далее клубки, образованные магнитными лентами должны подвергнуться изменениям. От некоторых отрезаются небольшие ненужные участки. К другим ― приклеиваются кусочек за кусочком более толстые магнитные ленты полисахаров. Кусочки широкой магнитной ленты приклеиваются и отрезаются специальными клубками из магнитных лент ― гликолитическими ферментами. Делается это либо в эндоплазматической сети, либо в пластинчатом комплексе.

Приклеивание начального участка широкой магнитной к скрученному клубку только что склеенной узкой магнитной ленты происходит в эндоплазматической сети. Затем секретируемый белок, то есть клубок магнитной ленты транспортируется в пластинчатый комплекс Гольджи и там широкая магнитная лента достраивается (доклеивается).

Чтобы выйти из эндоплазматической сети, клубок магнитной ленты должен пройти контроль на правильность трехмерной упаковки. Для этого есть специальные белки, которые проверяют, какие аминокислоты и моносахара торчат наружу. Если все правильно, то белок выходит. Если тест пройден, то белок транспортируется по направлению к пластинчатому комплексу Гольджи.

Итак, в данном разделе я очень кратко, с привлечением легко понимаемых (с моей точки зрения) и легко представляемых и наглядных моделей и аналогий описал основные понятия цитологии. Думаю, что после их прочтения читатель готов перейти к описанию механизмов наследования. Более подробно и научно механизмы наследования изложены в Приложении II.

3.4. КОМПЛЕМЕНТАРНОЕ СКЛЕИВАНИЕ (ИНТЕРФЕРЕНЦИЯ ИЛИ ГИБРИДИЗАЦИЯ) МОЛЕКУЛ РНК

"Не надо объяснять непонятное неизвестным"

Н. В. Тимофеев-Ресовский — из частных бесед и выступлений.

А теперь о том, что не входит в современные учебники и Википедию. Знаете ли вы, что один и тот же белок может быть получен на основе миллионов разных генов, самых разнообразных последовательностей нуклеотидов ДНК, у которых общими точками являются кодоны метионина и триптофана. Следовательно, одного и того же человека можно клонировать и получать абсолютно идентичные фенотипы на основании десятков и сотен генотипов.

А теперь вопрос на засыпку ― напишите белки, которые зашифрованы следующими последовательностями нуклеотидов в РНК, которая комплементарна соответствующим участкам ДНК.

1. УУУ ЦУЦ ЦЦУ ЦГУ УАУ ГУУ

2. УУЦ ЦУУ ЦЦЦ ЦГЦ УАЦ ГУЦ

3. УУУ ЦУЦ ЦЦУ ЦГА УАУ ГУА

4. УУЦ ЦУУ ЦЦЦ ЦГА УАЦ ГУА

5. УУУ ЦУЦ ЦЦУ ЦГГ УАУ ГУГ

6. УУЦ ЦУУ ЦЦЦ ЦГГ УАЦ ГУГ

7. УУУ ЦУЦ ЦЦУ ЦГЦ УАЦ ГУЦ

8. УУЦ ЦУУ ЦЦЦ ЦГУ УАУ ГУУ

В качестве подсказки приведу выдержку из таблицы кодонов ГУЦ-Валин, УУУ-Фенилаланин, УАУ-Тирозин, ЦЦУ-Пролин, ЦГЦ-Аргинин, ЦУУ-Леуцин, ЦГУ-Аргинин, ГУГ-Валин, УУЦ-Фенилаланин, ГУА-Валин, ЦЦЦ-Пролин, ЦГГ-Аргинин, УАЦ-Тирозин, ЦУЦ-Леуцин, ЦГА-Аргинин, ГУУ-Валин, АУА Метионин, ААУ Аспаргин

После кропотливой работы в качестве рибосомы вы с удивлением обнаружите, что эта последовательность нуклеотидов кодирует один и тот же полипептид: Фенилаланин-Леуцин-Пролин-Аргинин-Тирозин-Валин. И я еще привел не все возможные комбинации нуклеотидов, которые дают один и тот же белок.

Поэтому, если в нуклеотидной последовательности РНК участок УУУ ЦУЦ ЦЦУ ЦГУ УАУ ГУУ заменит на УУЦ ЦУУ ЦЦЦ ЦГЦ УАЦ ГУЦ, то согласно формальной генетике вообще ничего не произойдет. Если же учесть, что аминокислота тирозин гомологична аминокислоте фенилаланин, а аргинин ― лизину и гистидину…, то количество подобных совершенно не видимых исследователю на уровне белка замен увеличивается на порядок. Итак, создание комплементарной цепи мРНК можно продемонстрировать на примере модели нескольких цепей нуклеотидов, которые дают абсолютно один и тот же белок.

Задумывались ли вы над таким вопросом ― сколько генов могут кодировать белок вазопрессин или инсулин? Или сколько наборов генов можно найти, чтобы в результате клонирования получился абсолютно такой же организм, как ваш? Так вот ответ ― тысячи, а часто миллионы совершенно разных последовательностей нуклеотидов могут кодировать один и тот же белок и не меньшее число наборов генов могут кодировать один и тот же набор белков, который мы называем организмом.

Все дело в том, что генетический код является вырожденным. Я бы лучше использовал слово размытый (подробнее см. Приложение II.11). Размытость генетического кода приводит не только к ситуации, когда один и тот же белок, состоящий абсолютно из одних и тех же аминокислот, может кодироваться тысячами, а иногда миллионами различных последовательностей ДНК… Все дело в том, что одна и та же аминокислота может кодироваться несколькими кодонами. Например, три гомологичные, то есть взаимозаменяемые и важнейшие с точки зрения функции белка аминокислоты с преимущественно щелочными свойствами: аргинин, лизин и гистидин кодируются 10 разными триплетами нуклеотидов. Раз так, то семейство генов, кодирующих один и тот белок можно представить в виде пучков разных нуклеотидных последовательностей сходящихся к одному и тому же кодону в местах, где у белка имеются метионин и триптофан. Метионин всегда начинает последовательность полипептидной цепи. Они оба кодируются лишь одним кодоном.

Поясню данную мысль следующим примером. Возьмем, например, условный белок, составленный из следующих аминокислот: метионин, пролин, аспарагин, аспарагиновая кислота, серин, глицин, глицин, глицин, глицин, глицин, глицин, глицин, изолейцин, аргинин, триптофан, лейцин, треонин

Этот условный белок может быть получен путем трансляции с множества генов. Приведу лишь два таких гена из множества возможных.

1) ГЦА-ТТЦ-ГГТ-АГЦ-ЦТА-ААГ-ААЦ-ААА-ААТ-ААЦ-ААГ-ГЦЦ-ТАА-УГГ-ТЦТ-ГТТ

2) ГЦА-ТАГ-ЦГТ-ТЦЦ-ГТА-ААА-ААА-ААГ-ААЦ-ААТ-ААГ-ГЦТ-ТАГ-УГГ-ТЦЦ-ГТА

Почему же мы не находим в литературе множества генов, кодирующих один и тот же белок? Дело в том, что цепь РНК тоже способна образовывать двойные цепи, хотя они и менее стойки, чем таковые из двух нитей ДНК. Вот лишь один из примеров.

Цепь ДНК

А-Т

Т-А

Г-Ц

Ц-Г

Склеивание двух цепей РНК

У-А

А-У

Г-Ц

Ц-Г

Подобная вариабельность генов для одного и тоге же белка легко ведет к тому, что получаемая в результате созревания предшественника мРНК может давать склеивание внутримолекулярное или гетеромолекулярное (между разными молекулами). Если в двух мРНК имеются подобные комплементарные участки, то возможно склеивание этих участков.

Цепь РНК тоже способна образовывать двойные скрутки, хотя они и менее стойки, чем таковые из двух нитей ДНК. Если в двух мРНК имеются подобные комплементарные участки, то будет склеивание, гибридизация. Вопрос, насколько длинным должен быть участок склейки, чтобы склейка двух мРНК была настолько прочной, что стала бы мешать работе всей системы? Поэтому во время естественного отбора идет отбор целостных комбинаций генов, а не отдельных генов. Как подбираются наборы белков и РНК, пока не ясно. После несмысловой мутации требуется согласование генотипов. Что это значит?