Лысенко был прав! — страница 33 из 123

ая кислота и лейцин), имеющаяся на конце аминокислотной цепи белков, которые находятся в просвете эндоплазматической сети, определяет их взаимодействие с КДЕЛ рецептором и их возврат назад из аппарата Гольджи в случае их попадания в просвет цистерн аппарата Гольджи.

Последовательность из других четырех аминокислот (лизин, лизин, и две любые аминокислоты на С-конце цитоплазматического домена мембранных белков на С-конце цепи (это конец, который оканчивается атомом углерода) ККХХ определяет взаимодействие белков с белковым покрытием мембран под названием коатомер-1 и вызывает блокирование их выхода из эндоплазматической сети. Позиция белков на в аппарате Гольджи определяется длиной и строением участка их аминокислотной цепи, расположенного внутри липидного бислоя, и взаимодействием с другими ферментами гликозилирования, по типу олигомеризации, то есть, образования коротких полимеров. Позиция ферментов лизосом определяется наличием специальной последовательности аминокислот, к которой присоединяется остаток маннозо-6 фосфата. Наличие такого остатка в полисахаридной цепочке ведет к взаимодействию этого белка с рецептором маннозо-6-фосфата, который локализован в мембранной сети, расположенной после аппарата Гольджи, и затем перемешается сначала в поздние эндосомы, а потом после отщепления там от рецептора в лизосомы (см. Приложение V).

Кроме того белки могут классифицироваться с точки зрения молекулярной биологии и "проявляемости" мутаций (см. раздел 6.4). По этой классификации белки могут быть разделены на следующие группы.

1. Изогены. Тот геном, который мы имеем расшифрованным в базах данных, это геном одного какого-то человека. За счет наличия изогенов один и тот же фенотип человека может кодироваться миллионами генотипов. Возникают вопросы. Почему в базах данных белки, последовательности нуклеотидов даны в одном варианте, а не в миллионах возможных? Почему в базах данных мы практически всегда имеем дело не с миллионами вариантов последовательностей нуклеотидов, а с одной? Поэтому там не приведены миллионы возможных изогенов? Ответ прост. Миллионы лет эволюции привели к тому, что природа подобрала такие сочетания генов, которые ни в одном даже самом небольшом участке при синтезе незрелой и зрелой мРНК не дают комплементарных цепей, способных к склеиванию.

Аллельные (то есть образующие пару генов в парных хромосомах — один от отца, другой от матери) гены, кодирующие белки, можно разделить на несколько групп с точки зрения того, насколько их функция отличается друг от друга. Как я уже писал, один и тот же белок может кодироваться тысячами, а может миллионами разных генов. Это число можно подсчитывать для каждого отдельного белка. Это связано с тем, что одна и та же аминокислота может кодироваться несколькими триплетами нуклеотидов. Двумя исключениями из данного правила являются метионин и триптофан. Метионин всегда начинает аминокислотную последовательность любого белка, а тирозин обладает уникальным среди аминокислот боковой группой, имеющей форму восьмерки, которая состоит из бензольного кольца и пятичленного гетерокольца, содержащего азот. Следовательно, семейство генов, кодирующих данную цепь аминокислот, может быть представлено как связка пучков последовательностей нуклеотидов, которые сходятся в точках, где в белке расположены метионин и триптофан. Такая ситуация требует для своего обозначения специального термина. Назовем последовательности нуклеотидов, дающие при синтезе абсолютно одинаковые белки, изологичными генами или изогенами.

Тот же самый человек в других соматических клетках может иметь изогены того же самого белка, поскольку не во всех клетках синтезируются все гены. Те, которые могли бы быть подвергнуты гибридизации, могут не экспрессироваться, не синтезироваться, будучи заблокированными на уровне гетерохроматина. Поэтому, если для клонирования человека берется соматическая клетка, то очень велика вероятность того, что она будет страдать от гибридизационных осложнений транскрипции. Наличие возможной межмолекулярной гибридизации может маскироваться низким уровнем синтеза белков, которые могли бы давать феномен гибридизации с изогеном, полученным в результате мутации. Получается, что у одного и того же человека может быть миллион близнецов, которые существенно отличаются по генотипу, но абсолютно одинаковы по фенотипу.

2. Гомогены. Если мы учтем, что большинство аминокислот имеют гомологичные аминокислоты, видимо, опять за исключением метионина и триптофана, то пучки нуклеотидных последовательностей, расположенных между метионинами и триптофанами или между метионином и триптофаном будут ещё гуще. Последовательности нуклеотидов, дающие при синтезе белки, которые практически не отличаются по своей функции из-за того, что там аминокислоты заменены на свои гомологичные, гомологичными генами или гомогенами. А белки, которые получаются при синтезе из гомологичным генов или гомогенов, гомологичными белками. Другими словами, изологичные последовательности дают совершенно одинаковый белок. Гомологичные последовательности дают белки почти совершенно одинаковые по функции.

3. Дублируемые белки. Изоформы белков (232). Изоформы белков и должны быть гомоформы. Отличие в том, что это мутации с той же самой рамки считывания сплайсинга. Изоформы меняется рамка сплайсинга.

4. Незаменимые белки. Число их невелико. Так на моей памяти это белки коатомера номер один и два. После их удаления клетки обязательно гибнут.

5. Заменяемые или функционально параллельные белки ― белки, которые находятся в аллельной паре, но имеют разное строение главных функциональных групп, мы назовем функционально различными изоформами, в случае, если при их образовании используется альтернативный сплайсинг, и негативнодоминантными белками, если имеется замена консервативной аминокислоты на негомологичную, что ведет к изменению функции данного белка.

5. Белки с двойной функцией. Обычно в тех, частях белков, которые выполняют определенную биологическую функцию, наиболее важные для этой функции аминокислоты оказываются очень консервативными в течение эволюции. Это обстоятельство легко распознается современными компьютерными программами, ориентированными на сравнение последовательностей нуклеотидов и аминокислот.

6. Повреждающие мутантные белки, которые блокируют функцию нормального белка.

7. Выбитые белки вследствие сдвига рамки считывания или мутаций в начальном кодоне данной рамки считывания…

8. Гибридизирующие белки (а точнее гены) ― это гены, транскрипция с которых ведёт к внутримолекулярной или межмолекулярная гибридизация.

Сейчас, у нынешних организмов подавляющее большинство преобразований основаны на "приклеивании" одного белка к другому или к небольшой молекуле. При склеивании изменяется метаболическая активность белка, его каталитические (энзиматические) свойства. Обычно взаимодействия белков основаны на следующих феноменах.

1. Электростатическое склеивание.

2. Гидрофобное склеивание (минимизация свободной энергии).

3. Белки могут погружать в мембрану свои гидрофобные участки и закон минимизации свободной энергии не позволяет им отклеиться от мембраны, если там имеется гидрофобный участок.

5.8. НЕНУЖНЫЕ ГЕНЫ ИЛИ ЧТО ПОКАЗАЛИ ЭКСПЕРИМЕНТЫ С УДАЛЕНИЕМ ГЕНОВ?

В последние годы проведена масса экспериментов по удалению того или иного гена или блокирования функции данного гена. И оказалось, что имеется огромное число случаев, когда удаление или мутация отдельного гена не влияет на фенотип (182).

Из 6000 генов дрожжей только 1200 необходимо для жизни. Большинство из остальных 4800 при полном удалении не дают почти никакого фенотипа. После их удаления по отдельности клетка выживает. То есть, они могут быть компенсированы почти полностью. Как при остром воздействии ― не ясно. Таких ситуаций особенно много встречается при изучении мышей. По мышам даже хотят основать специальный журнал, где можно было бы публиковать генные нокауты, то есть описания мышей, у которых с помощью генной инженерии удален тот или иной ген, но никаких проявлений отсутствия гена не обнаруживается, то есть без фенотипа (185).

Основной урок из экспериментов с удалением того или иного гена состоит в том, что нет незаменимых генов, кроме самых древних и общих, например, коатомер для животных клеток.

Исходя из данных опытов все гены (а точнее белки) могут быть разделены на следующие группы:

1. Абсолютно незаменимые ― без этих генов после удаления клетки немедленно погибают или подвергаются апоптозу, самоубийству клетки. Мышиные эмбрионы после удаления данных генов гибнут. Клетки гибнут после удаление функции генов с помощью интерферирования РНК. Имеются существенные изменения после блокирования функции с помощью микроинъекции в клетку ингибирующих блокирующих антител или других подобных воздействий. Примерами могут служить коатомер-1 ― у животных, коатомер-2 ― у растений и дрожжей. Сар 1 п входит в состав белкового комплекса, который является почти не заменимым для дрожжей и растений, но заменим для животных.

2. Почти не заменимые ― мышиные эмбрионы без этих генов живут эмбрионы, но плохо. Повреждения заметны после экспериментов с интерференцией РНК.

3. Частично заменимые ― эмбрионы после удаления таких генов не страдают. После РНК-интерференции изменения слабые, а после микроинъекции антител ― чуть заметные изменения.

4. Заменимые. Эмбрионы живут. Эффекта интерференции РНК почти нет. После антител почти нет эффекта.

Удаление кавеолина-2 у мышей вообще не влияет почти ни на что. Некоторые отклонения можно обнаружить только при сверхнагрузке. Мыши, у которых был из генотипа удален белок кавеолин-1 (это белок, который обусловливает образование мелких мембранных пузырьков на плазматической мембране синтезирующих его клеток), обнаруживали также резкое снижение концентрации другого сходного белка кавеолина-2, хотя уровень его транскрипции был не изменен. Оказалось, что кавеолин-1 и кавеолин-2 образуют комплекс друг с другом. Кавеолин-2 деградирует за счет его разрушения в протеосомах, так как ингибирование функции протеосом возвращает исходный уровень кавеолина-2 (190).