Опухоль меланома вызывается более 30 тысячами различными мутациями, ошибками генетического кода, а рак легкового вызывается 23 тысячами мутаций.
Признаки зависят не от гена, а от повреждающей мутации в единственном гене. Нет признака, определяемого одним геном. Может быть мутация одного, а чаще, цепи генов, ведущая к появлению нового признака, но этот признак появляется только в данном геноме. Но к чему приведет мутация, зависит от генома.
Вот характерный пример, показывающий, что тысячи генов вовлечены в формирование даже одного признака. Когда в дрозофиле стимулировали активность гена, который носит название безглазый (eyeless), то глаза у нее выросли на крыльях, ножках, антеннах и других тканях. То же самое произошло, когда в геном дрозофилы пересадили гомологичный ген "безглазости" от мышей, но глаза образовались при этом не мышиные, а мушиные. Развитие глаза в геноме дрозофилы контролируется 2500 генами (182. С. 96). Ген "безглазости" оказался регуляторным геном.
С другой стороны, введения недостающих генов в сетчатку оказалось вполне достаточно для восстановления нормального зрения у взрослых обезьян, которые страдали цветовой слепотой с рождения (23). В эксперименте на двух самцах обыкновенных беличьих обезьян, у которых цветовая слепота широко распространена и обусловлена отсутствием генов, кодирующих светочувствительные рецепторы, удалось восстановить восприятие цвета у взрослых подопытных обезьян при помощи генной терапии. В сетчатку обезьян, неспособных воспринимать красный цвет, ввели человеческий ген, кодирующий отсутствовавший у животных цветочувствительный пигмент. Спустя 20 недель у обезьян восстановилась способность видеть красный цвет. Восприятие красного цвета сохранялось у животных в течение более чем двух лет после экспериментальной процедуры.
Одни и те же белки у разных видов могут играть разную функциональную роль. Окситоцин и вазопрессин практически одинаковы у разных животных. Они действуют очень похоже, но по-разному. У всех изученных животных эти пептиды регулируют общественное и половое поведение, хотя конкретные механизмы их действия могут различаться у разных видов. Окситоцин у позвоночных регулирует половое поведение самок, а также их привязанность к детям и брачному партнеру. Вазопрессин влияет больше на самцов, в том числе на их агрессивность, территориальное поведение и отношения с самками. У моногамных полевок самки на всю жизнь привязываются к своему избраннику под действием окситоцина. У самцов того же вида супружеская верность регулируется вазопрессином и дофамином. Введение вазопрессина самцу моногамной полевки быстро превращает его в любящего мужа и заботливого отца. Однако на самцов близкого вида, для которого не характерно образование прочных семейных пар, вазопрессин такого действия не оказывает. Очевидно, нейропептиды не создают тот или иной тип поведения из ничего, а только регулируют уже имеющиеся поведенческие стереотипы (150).
Итак, хотя догма в формальной генетике утверждает, что ген реализуется в признаке, на самом деле это не так. Практически нет прямой связи признака и гена (кроме, может быть, бактерий, которые секретирует фермент). Нет никакого гена "безмитохондриальности", что мы видим у микроспоридий. Есть ген, который вызывает у гороха морщинистость горошин, но он не вызывает морщинистости у риса, на самом деле, никаких единичных генов, кодирующих наследуемые напрямую сложные фенотипические признаки на уровне целостного организма и доступных для генетического изучения во времена Моргана тоже нет и не было. Нет признаков, определяемым одним геном. Может быть мутация одного, а чаще нескольких генов, ведущая к появлению признака рецессивного (см. Приложение VI). Закон о неделимых частичках наследования тоже оказался неверен. Они делимы ― белки могут иметь разные изоформы…
Но только лишь в нескольких случаях природе удалось добиться получения прямой связи между строением гена и получающимся признаком (Мендель, Де Фриз…). Любая наследственная информация реализуется через целый геном. Потеря признака часто есть вредоносная мутация гена, но не наоборот. Сам по себе ген без других генов ничего не значит. Пересадка так называемого гена морщинистости гороха в геном риса не приводит к появлению морщинистости у рисовых зерен.
8.3. МЕНДЕЛЕВСКИЙ ГОРОХ
Чтобы ещё раз проверить, есть ли независимое распределение бус-шариков в генетической матрице Менделя, давайте обратимся к схеме опытов Менделя и посмотрим, а что же все-таки он исследовал и что нашел, как им были организованы эксперименты, что он сравнивал, какие гены были использованы в его экспериментах и что они кодируют?
Чтобы судить о предмете, надо читать оригинальные статьи и я это сделал ― прочитал знаменитую статью Менделя. Правда, на английском языке, так как немецкого я не знаю. Однако я не уверен, что кто-либо из моих критиков читал оригинальную статью Менделя.
Итак, Мендель работал с садовым горохом. Цель своей серии опытов он сформулировал следующим образом: «Задачей опыта было наблюдать эти изменения для каждой пары различающихся признаков и установить закон, по которому они переходят в следующих друг за другом поколениях. Поэтому опыт распадается на ряд отдельных экспериментов по числу наблюдаемых у опытных растений константно-различающихся признаков» (99).
Далее в своей статье Мендель сформулировал требования к экспериментальной системе для выявления закономерностей расщепления признаков.
1. Отличия фенотипов должны быть постоянными и легко дифференцируемыми.
2. Гибриды должны быть защищены от опыления чужой пыльцой.
3. Гибриды и их потомство не должны страдать от побочных генетических нарушений, связанных со скрещиванием.
Для опытов на садовом горохе из всех признаков Мендель выбрал только альтернативные легко различаемые черты фенотипа — то есть такие, которые имели у имеющихся сортов два четко различающихся варианта (семена либо гладкие, либо морщинистые ― промежуточных вариантов нет).
1. Форма горошин. Круглые и морщинистые горошины.
2. Цвет внутренности горошин. Желтый и зеленый цвет семядоли, или содержимого горошины.
3. Цвет цветков. Пурпурные или белые цветки.
4. Форма стручков. Гладкие стручки или стручки, имеющие бороздки между горошинами.
5. Цвет стручков. Зеленые или желтые стручки.
6. Расположение цветков. Аксиальное (на конце всех крупных веток) или терминальное (только на верхушке растения) расположение цветков.
7. Длина стебля. Длинный или короткий стебель (ствол).
Такое сознательное сужение задачи исследования позволило четко установить общие закономерности наследования.
Сразу отмечу, что признаки, названные первыми, оказались доминантными. Гладкая форма горошин доминировала над морщинистой. Желтый цвет внутреннего содержимого горошины доминировал над зеленым. Фиолетово-красный цвет кожуры горошин доминировал над белым. Зеленый цвет стручков доминировал над желтым. Позиция цветков на конце веток доминировала над терминальной, то есть их появлением только на самых высоких ветках растения. Длинный ствол доминировал над коротким.
Мендель подробно описывает, как он сажал горох, как его опылял, как оценивал результаты. Каждую горошину он рассматривал под лупой, сравнивая их форму и делая записи. Видимо, уже тогда выявить морщинистость горошин во многих случаях было очень трудно. Хотя величина горошин достаточна для того, чтобы сразу увидеть, есть ли на кожуре морщины или нет (134, 215).
От семеноводческих фирм им было получено 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Мендель два года выдерживал сорта гороха на основе самоопыления. Эксперимент облегчался удачным выбором объекта: горох в норме самоопылитель, но легко проводить его искусственное опыление. Когда Мендель убедился в том, что сорта стабильны, он начал свои опыты. У одного растения удалялись тычинки (пыльники) и пестики опылялись пыльцой, взятой от другого сорта.
После всего этого Мендель спланировал и провел масштабный эксперимент. Он проводил скрещивание чистых сортов между собой, а полученные гибриды скрещивал между собой. Он изучил наследование отобранных семи признаков, проанализировав в общей сложности около 20.000 гибридов второго поколения. В результаты экспериментов он внес данные об анализе 7324 горошины.
Если скрещиваемые особи гомозиготны по рецессивному и доминантному генам, то первое поколение будет 3 к 1. Если скрестить особи гомозитотные по доминантному и рецессивному признакам, то в первом поколении все растения имеют доминантный признак, но являются гетерозиготными, то есть содержат в геноме доминантный и рецессивный ген. Во втором поколении происходит расщепление признаков в соотношении 3 к 1. То есть три особи имеют доминантный признак, а одна особь рецессивный (11). Расщепление в соотношении 3 к 1 происходило только при полном доминировании.
Например, при скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с желтыми и зелеными семенами, у всех потомков семена были желтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким.
Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).
Итак, при скрещивании организмов, различающихся по одной паре контрастных признаков, за которые отвечают аллели одного гена, первое поколение гибридов единообразно по фенотипу и генотипу. По фенотипу все гибриды первого поколения характеризуются доминантным признаком, по генотипу всё первое поколение гибридов гетерозиготное. Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.