Лысенко был прав! — страница 51 из 123

Чтобы понять суть открытий Мичурина и Лысенко в области агробиологии, мне пришлось поднять литературу по физиологии растений. И оказалось, что мои знания, полученные во время обучения в мединституте, были довольно ограниченными.

Например, не знал я, что с информационной РНК можно в помощью специальных белковых механизмов перенести информацию на ДНК, расположенную в ядре, что в растениях возможен прямой перенос наследственной информации из клеток растения, куда подсажен черенок в клетки подсаженного черенка.

Выше я указывал, что имеется существенное различие в механизмах передачи наследственной информации между растениями и животными. Итак, в растениях передача наследственной информации идет по внутриклеточным путям синцития растений (или, как говорят, по флоэме). Следовательно, при вегетативной гибридизации должен существовать механизм горизонтального переноса генетической информации от растения-хозяина к побегу и наоборот. А главным становится вопрос, а образуется ли синцитий между привоем и подвоем.

Так что же происходит при вегетативной гибридизации? При пересадке привоя черенок другого растения-гостя внедряется в разрез на коре подвоя или растения хозяина. При разрезе или повреждении коры дерева или, в случае травянистого растения, наружной часто стебля под ней немедленно начинается активное деление и размножение окружающих клеток, которые формируют под корой скопление. В этом скоплении вновь образованные клетки устанавливают между собой цитоплазматические мостики, трубочки, или плазмодесмы. Одновременно делятся и клетки в месте отреза привоя на границе между омертвевшей древесиной и корой. Делящиеся клетки хозяина и гостя устанавливают контакты между собой и формируется общая клеточная система, включающая клетки двух разных растений. По этой системе как по трубочкам между закрытыми бачками (см. выше) идет передвижение информационной мРНК, а затем обратная трансляция информации на ДНК привоя и в меньшей степени на ДНК хозяина. Все это доказано экспериментально.

9.2. МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ МЕХАНИЗМЫ НАСЛЕДОВАНИЯ В РАСТЕНИЯХ

Сейчас точно установлено, что генетическая информация из одной клетки растения передается в другие. Прививочный (вегетативный) гибрид ― это растение, полученное в результате прививки (трансплантации) чужеродной соматической ткани (привой) на материнское растений (подвой); примером стабильного межродового (Sorbus и Aronia) Примером может служить красночерная рябина (10).

Если генетические системы привоя и подвоя совсем несовместимы, то привой гибнет или же гибнут оба, так как генетическая информация от привоя отравляет клетки хозяина. Вегетативные гибриды на уровне знаний 1948 года с точки зрения школы Лысенко подробно описал И. Е. Глущенко (24). Первыми же доказали перенос наследственной информации между привоем и подвоем Т. Лысенко вместе со своей ученицей М. В. Алексеевой.

В 1933 г. М. В. Алексеева привила на пасленовые (табак, дурман) черенки помидора (тело помидора). Было обнаружено, что листья томата, привитого на табак, содержат никотин, а в плодах томата, привитого на дурман (датура страмониум) появился атропин. Наиболее существенным доказательством открытия было изменение формы плода от прививки на дикорастущей солянум дулькамара. Следовательно, в привитое растение (привой) переносится наследственная информация. Причем данная информация потом обнаруживается в семенах привоя (более подробно см. раздел 14.7).

Экспериментальные наблюдения, свидетельствующие о переносе генетической информации от хозяина к привою, однозначно указывают на то, что при вегетативной гибридизации существует механизм горизонтального переноса наследственной информации от левкоя (подвоя) к побегу (привою) и наоборот. Как это происходит?

Протопласты формируются после деполимеризации полимеров, образующих клеточную стенку растений. Протопласты способны сливаться друг с другом. Клетки, полученные после такого слияния, называются гетерокарионы. Сливаться могут как протопласты одного вида растений, так и протопласты разных видов растений. В растениях одна единственная зрелая клетка может дать начало целому растению.

После Лысенко соматическая гибридизация или спонтанного явление слияния неполовых (соматических) клеток in vitro (вне организма или точнее в культуре ткани) была переоткрыта руководителем лаборатории тканевых культур и вирусов Жорж Барский (Georges Barski) во Франции в 1960 году. Соматические гибриды клеток растений, полученные по методике Барского, можно выращивать в виде культуры тканей, и получать целое растение "на грядке" (52).

Приведу небольшую цитату. "В 1960 г. … биолог Дж. Барский, культивируя в одном сосуде сразу две различные линии клеток, обнаружил, что у некоторых клеток хромосом было больше, чем полагалось. Барский предположил, что это было результатом случайного объединения клеток. Сначала сообщение о слиянии соматических (то есть не половых) клеток было встречено с недоверием, но последующие работы подтвердили факт спонтанной гибридизации клеток. Правда, гибридные клетки возникали очень редко, один раз на десять ― сто тысяч случаев. Поэтому надо было как-то подстегнуть процесс слияния… Задачу решили с помощью вируса Сендай, который после встраивания в оболочки клеток примерно в сто раз увеличивает возможность слияния клеток, изменяя их наружную оболочку. Недавно появился еще один способ добиться той же цели. Клетки обрабатывают синтетическими полимерами, например полиэтиленгликолем, которые тоже меняют свойства липидов клеточной мембраны и облегчают слияние" (52).

Из гетерокарионов, образованных после слияния протопластов разных видов растений, может развиваться целое растение — соматический гибрид этих двух видов, но только в том случае, если удается решить проблему несоответствия числа хромосом или же, если происходит полиплоидизация с последующим перераспределением генов с использованием мобильных генетических элементов. В большинстве случаев, однако, созданию генетически стабильного гибрида препятствует некие факторы, связанные с несовместимостью кариотипов.

Итак, существует механизм, который мог бы вести к образованию плазмодесм между подвоем и привоем. Поскольку подвой нормально развивается после пересадки, то логично думать, что он связан с водопроводящей системой хозяина и с системой транспортирующей питательные вещества из листьев. Из сельскохозяйственной практики известны случаи, когда после пересадки привоя, все ветки подвоя (то есть хозяина) отрезались и получалось растение, состоящее из корня и ствола хозяина и веток и листьев привоя.

В литературе известны растения паразиты, которые сами могут внедряться в организм другого растения и при этом не подвергаться генетическому воздействию со стороны генома хозяина. У них выросты клеток, контактирующих с клетками хозяина глубоко внедряются в цитоплазмы соседствующих клеток хозяина. Такие обширные мембранные контакты в какой-то мере заменяют функцию плазмодесм и одновременно препятствуют перемещению генетического материала из клеток хозяина в клетки паразита и наоборот. Большинство же растений такими механизмами не обладает. Следовательно, должно быть формирование плазмодесм между клетками хозяина и привоя. А раз плазмодесмы формируются, то перенос генетической информации становится реальностью. Если информационная РНК может передвигаться между клетками хозяина и по привою, раскрывает механизм, за счет которого эта наследственная информация может потом включаться в ДНК привоя.

Известен ряд фактов, подтверждающих мое заключение. Оказалось, что индивидуальные органы и ткани растения не обязаны быть фенотипически или даже генетически идентичными. Геномы их клеток могут разойтись в результате соматических мутаций, соматических рекомбинаций (результаты относительно общего митотического кроссинговера) или в результате наследственных (но часто обратимых) изменений (в основном ― метиляций) генома (205). С точки зрения общей биологии более важен факт того, что наследственные различия в фенотипе существуют между клетками различных частей одного растения.

Недавние эксперименты с привоями показали, что эндогенная (от хозяина, подвоя) информационная РНК (переносчик информации от ДНК к месту синтеза белка) перемещается по трубочкам, соединяющим клетки между собой, к клеткам привоя (194). Перезапись информации с РНК на ДНК хозяина происходит с помощью особых ретровирусов (см. разделы 9.5, 9.6) и белковых частиц-ретротранспосом, тем самым информация оказывается интегрированной в геном привоя (189). Если говорить по-научному, то она входит и передвигается от одной клетки к другой по цитоплазматическим мостикам, соединяющим все растительные клетки в данном организме, в том числе клетки привоя и подвоя.

Существует также механизм горизонтального переноса генетической информации от левкоя (подвоя) к побегу и наоборот — от привоя к подвою. Недавно эксперименты с привоями подтвердили, что эндогенная (от хозяина) мРНК входит и передвигается по системам перемещения растворов в привоях (194).

После открытия того факта, что информационная РНК может передвигаться между клетками хозяина и по привою раскрывают механизм за счет которого эта наследственная информация может потом включаться в ДНК привоя с помощью ретровирусов и ретротранспосом и поэтому оказывается интегрирована в геном привоя (189).

Недавние эксперименты с трансгенными (которым пересажены чужие ДНК) растениями показывают, что регуляция генной экспрессии взаимосвязана со всеми частями растения. Так, перепроизводство трансгенного продукта в одной части растения часто влечет инактивацию гена во всех тканях трансгенного растения (180, 187). В последние годы несколько независимых групп исследователей доказали, что вызываемые в привоях вариации фенотипа стабильны и даже могут наследоваться (168–170).

Предвосхищая открытия клеточных биологов, Лысенко считал, что из подвоя в привой переходят не хромосомы, а как он называл, ассимиляты. Сейчас доказано, что если в какой-то клетке растения обнаруживается избыток какого-либо белка, то информация об этом быстро становится доступной для других клеток (они, ведь образуют синцитий, будучи связаны межклеточными мости