ками, по которым информация и передается) и они снижают синтез данного белка. Это было установлено с использованием метода пересадки генов от одного растения к другому (180, 187). Синтезированная в одной клетке мРНК может двигаться в пределах всего синцития растений (144). В последние годы несколько независимых групп исследователей доказали, подтвердив результаты Лысенко и Алексеевой, что вызываемые в привоях вариации фенотипа стабильны и даже могут наследоваться (152, 168–170, 227).
У растений общее содержание ДНК остается неизменным, в то время как последовательность нуклеотидов меняется в разных клетках по-разному. С точки зрения общей биологии более важен факт того, что наследственные различия в фенотипе существуют между клетками различных частей одного растения. Оказалось, что индивидуальные органы и ткани растения не обязаны быть фенотипически (то есть отличиями внешних признаков) или даже генетически (на основе записанной наследственной информации) идентичными. Геномы их клеток могут разойтись в результате соматических мутаций, соматических рекомбинаций (результаты относительно общего митотического кроссинговера) или в результате наследственных (но часто обратимых) изменений (в основном ― метиляций, то есть присоединения метильной группы к ДНК) генома (205).
Итак, механизм передачи наследственных свойств от подвоя к привою лежит в рамках современной генетической догмы. Белки и РНК могут легко проходить через плазмодесмы, переходя от подвоя к привою. Таким образом, наследственная информация переносится от РНК подвоя к ДНК привоя или, наоборот, от РНК привоя к ДНК подвоя. Транспортируемые молекулы, синтезируемые в других частях организма, воздействуют на онтогенез и физиологию (и тем самым на фенотип) конкретной ткани, а не всего растения. Поэтому при нормальных условиях различия между частями растения очень трудно наблюдать. Эта информация потом может быть захвачена и вновь формирующимися половыми клетками и она, конечно, будет расщеплена при половом размножении и надо добиваться получения гомозиготных растений.
Мичурин и Лысенко знали о расщеплении признаков и понимали, что надо добиваться получения гомозиготных растений. При половом размножении свойства сортов теряются. Кроме того, идет медленная деградация записанной наследственной информации. Почему имеется медленная деградация полученной генетической информации, не ясно.
Итак, современная молекулярная биология легко объясняет результаты вегетативной гибридизации, которые долгое время оставались водоразделом для признания некоторых научных результатов Лысенко. Если использовать научный язык, то Мичурин и Лысенко впервые применили на практике направленный мутагенез с помощью исследования информационной РНК растения-хозяина для изменения наследственности в геноме растения привоя, гостя.
Современная наука подтвердила, что Мичурин, а вслед за ним и Лысенко, по сути, научились воздействовать факторами внешней среды на генетическую программу. Современная молекулярная биология легко объясняет результаты вегетативной гибридизации, которые долгое время оставались водоразделом для признания некоторых научных результатов Лысенко. Чтобы заниматься селекцией, то есть по-русски ― отбором, нужно иметь из чего отбирать. Нужно генерировать разнообразие. Для этого есть два главных способа: мутагенез и сбор существующего в мире разнообразия. Мичурин и Лысенко впервые применили на практике направленный мутагенез с помощью использования информационной РНК растения-хозяина для изменения наследственности в геноме растения привоя. Именно Лысенко и Мичурин сделали великое открытие о возможности передачи наследственной информации от одной растительной клетки к другой в пределах целостного растения и закрепления ее в половых клетках. Гибридизация привоев оказалась простым, но мощным методом создания новых сортов (193).
9.3. УПРОЩЕННАЯ МОДЕЛЬ ПЕРЕДАЧИ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ В РАСТЕНИЯХ
Как же реализуется механизм переноса генетической информации от подвоя (растения-хозяина) к привою (пересаженному черенку)? Для объяснения молекулярных механизмов и для того, чтобы лучше понять строение растительных клеток и организацию работы их аппарата наследования я предлагаю следующую сильно упрощенную схему. Представьте себе несколько закрытых бачков, сделанных из теста и заполненных субстанцией, которая похожа на раствор яичного белка, и соединенных между собой тонкими трубочками. Стенка баков есть аналог клеточной мембраны или плазматической мембраны, по-научному. Раствор в баках содержит не только белки, типа раствора яичного белка, но и сахара, ионы, небольшие растворимые молекулы РНК, аминокислоты и некоторые другие вещества. Баки герметически закрыты. Если в один из баков впрыснуть краску, то она быстро диффундирует в другие баки. Баки ― это клетки, а трубочки ― это плазмодесмы. Внутри баков проложены миниатюрные железные дороги, которые могут перевозить небольшие грузы. В каждом баке имеется небольшая машинка для копирования информации с большого твердого диска-винчестера на бумажные перфоленты. Эти перфоленты могут прицепляться к паровозикам, курсирующим по миниатюрным железным дорогам. Информационная РНК (в нашем случае — бумажные компьютерные перфоленты) может транспортироваться клеткой с помощью микротрубочек и специальных микротрубочковых моторов, которые используют энергию АТФ или других богатых энергией молекул для целенаправленного и активного перемещения по микротрубочкам в определенные места клетки.
Итак, наша копировальная машина открывает винчестер, то есть ДНК и копирует на нем перфоленту, то есть информационную РНК. Эта перфолента прицепляется к паровозикам, то есть микротрубочковым белкам-моторам и паровозики тащат перфоленты по колеям к пересадочным станциям в виде плазмодесм-трубочек.
Около межклеточных трубочек-плазмодесм перфоленты сгружаются и вручную переносятся через трубочку с следующий бак, где они снова грузятся на паровозики и их везут к главной копировальной машине данного бака. Здесь включается считывание и генетическая информация считывается с диска и записывается на винчестер данного бака, то есть на ДНК хромосом. Эта информация из соматических клеток потом может быть захвачена вновь формирующимися половыми клетками и она, конечно, будет расщеплена. Вот и вся суть открытия Мичурина и Лысенко, объясненная на пальцах с точки зрения современной молекулярной и клеточной биологии.
9.4. ГЕНЕТИКА ПРОКАРИОТОВ И ВИРУСОВ
С другой стороны, законы наследования бактерий, микроскопические грибов, актинофагов, вирусов животных и растений, бактериофагов и др. микроорганизмов существенно отличаются от закономерностей наследования, обнаруженных у животных и растений. Например, у грибов и водорослей, сохранивших половой процесс, главная особенность состоит в том, что продукты мейоза (споры) остаются соединенными в определенном порядке, и после раздельного высева этих спор можно непосредственно изучать генотип каждого продукта мейоза.
До 40-х гг. 20 в. считалось, что, поскольку у микроорганизмов нет ядерного аппарата и мейоза, на них не распространяются Менделя законы и хромосомная теория наследственности. Затем американские генетики О. Т. Эйвери, К. Мак-Леод и М. Маккарти в опытах на пневмококках доказали, что материальным носителем наследственности в бактериях тоже служит ДНК.
В 1946 был открыт половой процесс у бактерий (конъюгация). Оказалось, что бактерии выделяют в окружающую среду фрагменты своей ДНК, могут поглощать такие фрагменты, выделенные другими бактериями (в том числе и относящимися к совершенно другим видам), и «встраивать» эти кусочки чужого генома в свой собственный. Затем был открыт околополовой процесс грибов. И наконец, был обнаружен эффект переноса генетической информации от одной бактериальной клетки к другой при посредстве бактериофага — генетической трансдукция.
У прокариотов есть свои особенности передачи наследственной информации. Обычно ДНК прикреплены к плазматической мембране, а вокруг последней может откладываться белки и полисахаридные цепи и образовывать. Важнейшая, основополагающая особенность эукариотических клеток связана с расположением генетического аппарата в клетке. Генетический аппарат всех эукариот находится в ядре и защищён ядерной оболочкой (по-гречески "эукариот" значит имеющий ядро). ДНК эукариот линейная (у прокариот ДНК кольцевая и находится в особой области клетки — нуклеоиде, который не отделён мембраной от остальной цитоплазмы). Она связана с белками-гистонами и другими белками хромосом, которых нет у бактерий.
Оказалось, что мутации возникают у бактерий независимо от условий культивирования. Более того, в больших популяциях бактериальных клеток мутации возникают спонтанно. В жизненном цикле эукариот обычно присутствуют две ядерные фазы (гаплофаза, один набор генов, и диплофаза, два набора генов). Первая фаза характеризуется гаплоидным (одинарным) набором хромосом, далее, сливаясь, две гаплоидные клетки (или два ядра) образуют диплоидную клетку (ядро), содержащую двойной (диплоидный) набор хромосом. Иногда при следующем делении, а чаще спустя несколько делений клетка вновь становится гаплоидной. Такой жизненный цикл и в целом диплоидность для прокариот не характерны.
Многие бактерии имеют плазмиды, которые есть небольшие колечки ДНК. Они содержат всего несколько десятков генов. У некоторых бактерий них в готовую молекулу РНК добавляются основания уридина. Иногда конечная молекула почти в два раза больше кодируемой в ДНК, и последовательность нуклеотидов в конечной молекуле даже не напоминает последовательность в ДНК.
ДНК прокариот представляют собой более короткие (до 5×106 пар оснований), чем у эукариот, молекулы, расположенные в цитоплазме, почти не включающие интронов и, в отличие от эукариот, имеющие вид кольца. С другой стороны, прокариоты имеют меньше наслаивания схем считывания, чем вирусы, и большие вставки между генами, чем вирусы.
Если несколько ферментов участвуют в выполнении какой-то одной определенной задачи, например, последовательно катализируют цепь биохимических реакций, расщепляющих, например, лактозу или синтезирующих, например, лейцин или триптофан, то очевидно, что синтез каждого из этих ферментов должен быть скоординирован с синтезом других ферментов этого метаболического, иначе единый метаболический путь не будет работать нормально. У прокариот такая координация достигается тем, что гены таких ферментов расположены рядом (без "пробелов", останавливающих транскрипцию) и транскрибируются они с единой регуляторной зоны (в которой расположены промотор и оператор) в виде особой полицистронной (с множеством экзонов) мРНК. Такая организация регуляторных и структурных генов названа опероном.