Для РНК-ферментов труднее, чем для белков использовать низкомолекулярные субстраты. Белки гораздо более эффективные катализаторы, чем молекулы РНК. Однако только РНК может служить матрицей, которая сохраняет информацию и ее передачу и как катализатор, который полимеризует РНК цепи и копирует свою собственную последовательность (131). В мире РНК молекулы РНК должны были бы сами хранить наследственную информацию и функционировать и как катализаторы, регулирующие метаболизм (226).
Вторым крупным усовершенствованием РНК-организмов было приобретение ДНК. Молекулы ДНК более устойчивы, чем РНК, и потому являются более надежными хранителями наследственной информации. Платой за стабильность стала неспособность молекул ДНК сворачиваться в глобулы и выполнять какие-либо активные действия. Изначально ДНК, скорее всего, была чем-то вроде покоящейся фазы в жизненном цикле самовоспроизводящихся колоний РНК, и лишь много позднее она стала основным носителем наследственной информации (66, 67).
По мнению Барбиери (130), изначально ДНК была не более, чем загрязнением РНК. Однако она оказалась идеальным паразитом и, в конце концов, взяла на себя функцию хранения информации ― часть функций первичной клетки по сохранению информации была необратимо передана ДНК. Данная модель объясняет, почему в ДНК только 5 % нуклеотидных последовательностей кодируют белки, а остальное является шумом, она снимает вопрос вероятности. Тем самым гипотеза Увессе-Барбиери снимала возражения к гипотезам первичности белков и гипотезе первичности ДНК.
Каждые три нуклеотида в молекуле ДНК кодируют одну аминокислоту в молекуле белка. Сейчас никто не знает, как именно появился генетический код. Известно, что он одинаков у всех живых организмов. Скорее всего, в начале генетический код был неполным, нечетким, неточным. Катализ был не точный, а приблизительный. Генетический код возник один раз, все ныне живущие организмы унаследовали именно этот генетический код. Нельзя исключить, что были и другие варианты, но они не дожили до наших дней (67).
11.6. ГДЕ ВОЗНИКЛА ПЕРВАЯ ЖИЗНЬ?
Важным является вопрос, а где же возникла первая жизнь. Судя по концентрации ионов внутри цитоплазмы у большинства современных клеток, первая протоклетка — предшественник полноценной клетки, могла образоваться в «лужице» с дождевой водой. Как я уже писал выше, основным ионом цитоплазмы является калий, который мог в достаточных количествах присутствовать в глинистых почвах.
Вот как описывает этот процесс доктор биологоческих наук А. Марков (66): " Все живые организмы дискретны в пространстве и имеют наружную оболочку. Трудно представить себе живое существо в виде туманного облачка или раствора. Однако поначалу преджизнь существовала именно в виде растворов. Чтобы не раствориться окончательно, не рассеяться в водах древних водоемов, "живые растворы" должны были ютиться в крошечных полостях, которые часто встречаются в минералах. Это тем более удобно, что некоторые минералы (например, пирит) являются неплохими катализаторами для многих биохимических реакций. Кроме того, поверхность минералов могла служить своеобразной матрицей, основой, к которой прикреплялись молекулы РНК. Упорядоченная структура кристаллов помогала упорядочить и структуру этих молекул, придать им нужную пространственную конфигурацию.
11.7. КТО ТЫ, НАШ ОБЩИЙ ПРЕДОК?
Большую часть сведений об эволюции эукариотических клеток и их органелл, внутри этих клеток я взял из коллективной монографии под редакцией Джекели (178), который в своих главах постоянно подчеркивает: идея о том, что простой организм ― примитивный организм, не верна. Пример ― микроспоридия, паразит, который является наиболее простым эукариотом, однако он произошел из более сложных простейших.
У всех живых существ на Земле один и тот же генетический код, принципиально одно и то же строение рибосом, транспортных РНК и многие другие молекулярные особенности одинаковые у всех без исключения форм жизни. Это дает основания ставить вопрос об общем предке всех живых организмов. Как пишет А. Марков (67), среди биологов идут большие споры по поводу того, какой образ жизни вел этот первый организм-всеобщий предок, как он жил, какой у него был обмен веществ, как он получал энергию. Очень быстро этот предок дал начало двум ветвям жизни, так называемые бактерии и археи ― две основных группировки прокариотов, то есть безъядерных организмов.
Как шел отбор белков, как шел отбор функций? По отбору этих основных свойств клеток можно судить об эволюции организмов. Есть специальные компьютерные программы, строящие линии эволюции белка. Это так называемый молекулярнофилогенетический анализ, то есть построение эволюционных деревьев на основе сравнения геномов современных микроорганизмов. Строя такие деревья, сейчас для этого существует хорошие, надежные, мощные компьютерные программы, можно понять, в каком порядке появлялись разные группы, в каком порядке происходили ответвления. И таким образом можно понять, кто появился раньше, кто позже и кто первым. Особенно полезным оказался филогенетический анализ высококонсервативной субъединицы рибосомальной РНК (130).
С большой вероятностью первыми были метаногенные археи ― это такие микроорганизмы, которые по сей день живут везде, где нет кислорода, но есть такой хороший восстановитель, как молекулярный водород, например. Эти метаногены живут, в частности, в кишечнике, там, где закапываются свалки, они заводятся под землей в бескислородных условиях, производят метан. Тает вечная мерзлота в Сибири, они там тут же заводятся, начинают производить метан, в болотах и так далее. Так вот метаногенные археи, помимо того, что они, на основании данных по сравнительной геномике, хорошие кандидаты на роль первых организмов, они еще по своей экологии хорошие кандидаты, потому что им ничего не нужно, кроме самых простейших химических соединений для жизни (67, 130).
Есть гипотезы, что прокариоты и эукариоты произошли от общего предка, но сейчас они мало популярны. Согласно так называемой основной гипотезе возникновения жизни по Увоесе (Woese, по имени автора), Археоэи и Эукариоты считаются сестрами, возникшими почти в одно и то же время, а бактерии возникли первыми. Около 1,5 млрд. лет назад в мире, населенном прокариотами, появились эукариоты (130, 178).
Рибосомы были образованы природой в ходе эволюции очень давно и потом практически не менялись. Рибосомы прокариотов и эукариотов разнятся. Они не могут заменить друг друга ― природа не повторяется. Они разнятся даже по размеру. Общий предок имел рибосомы промежуточные для про- и эукариотов. Молекулярный вес 70S рибосом прокариотов составляет 2 000 000 Дальтон, а молекулярный вес 80S рибосом в эукариотических клетках превышает 4 млн. Дальтон (единица измерения массы, равная по весу атому водорода), но до сих пор точность трансляции в первом типе рибосом выше (130). Молекулярная масса рибосом, выделенных из гороха, морского ежа, курицы и мыши, равна 3,9, 4,1, 4,3 и 4,5 млн. Дальтон соответственно (140). Рибосомы от разных видов эукариотов могут иметь отличающиеся друг от друга белки, но они синтезируют белки с той же самой точностью.
Почему нет эукариотов с рибосомами 70S? Видимо, такие эукариоты не могли переместить мелкие рибосомы из ядра в цитоплазму. С другой стороны, прокариоты в 8 °C рибосомами могли выжить, но они страдали при конкуренции с обычными прокариотами и вымерли. Прокариоты и эукариоты жили в симбиозе более миллиона лет и не обменивались своими рибосомами (130). Барбиери (130) считает, что рибосомы 70S произошли от рибосом 80S или обе произошли от единого общего предка, например 90S рибосомы. Но эта гипотеза требует тщательной проверки.
11.8. СИМБИОЗ С БАКТЕРИЯМИ ПРИВЕЛ К ОБРАЗОВАНИЮ МИТОХОНДРИЙ
Гипотеза о симбиотическом происхождении митохондрий была предложена в 1905 г., когда русские учёные К. Мережковский и А. Фаминцын выдвинули гипотезу о ведущей роли симбиоза в прогрессивной эволюции органического мира (гипотеза симбиогенеза), рассматривая, например, хлоропласты цветковых растений как видоизменённые симбиотические водоросли. В настоящее время она получила подтверждение на основе генетического анализа.
Ныне уже почти ни у кого не вызывает сомнения, что митохондрии и пластиды есть результат захвата из внешней среды прокариотических организмов и их адаптации к жизни внутри хозяина. Согласно современной симбиотической гипотезе, пластиды (места локализации хлорофилла и выработки химической энергии из энергии лучей солнца) произошли от цианобактерий (археобактерией), а митохондрии от альфа протобактерий иначе называемых пурпурными бактериями.
В пользу симбиотического происхождения митохондрий и пластид свидетельствуют следующие факты. Митохондрии и пластиды имеют две полностью замкнутые мембраны. При этом внешняя сходна с мембранами вакуолей, внутренняя — бактерий. Обе органеллы размножаются бинарным делением (причем делятся иногда независимо от деления клетки), никогда не синтезируются de novo. Их генетический материал представлен сравнительно небольшой (около 16,5 тысяч пар нуклеотидов) замкнутой в кольцо ДНК, не связанной с гистонами (по доле нуклеотидных пар Г-Ц ДНК митохондрий и пластиды ближе к ДНК бактерий, чем к ядерной ДНК эукариот). Митохондрии и пластиды имеют свой аппарат синтеза белка — рибосомы и др. Их рибосомы прокариотического типа — с величиной скорости осаждения, равной 70S. Их рРНК по строению близки к бактериальной. Некоторые белки этих органелл похожи по своей первичной структуре на аналогичные белки бактерий и не похожи на соответствующие белки цитоплазмы.
Археозоа ― это первично безмитохондриальная клетка, которая возникла в бескислородной среде 2,3 млрд. лет назад, перед Великим Кислородным Событием, небольшим по продолжительности периодом времени, когда на Земле резко увеличилась концентрация кислорода в атмосфере. Все амитохондриальные виды эукариотов являются не примитивными предшественниками, а высоко специализированными видами, как, например, микроспоридия. Гидрогеносомы и митосомы являются органеллами, которые в процессе эволюции произошли от митохондрий.