Лысенко был прав! — страница 67 из 123

Использование цитогенетического критерия позволяет надежно различать виды, почти не отличающиеся по морфологическим признакам, — виды-двойники. Так, анализ хромосомного набора позволил разделить прежде воспринимавшийся как единый вид полевки обыкновенной на 4 вида: обыкновенная полевка — 46 хромосом, восточноевропейская — 54 хромосомы, киргизская — 54 хромосомы, но иной морфологии, чем у восточноевропейской полевки, и закаспийская — 52 хромосомы (121).

Несмотря на большие разрешающие возможности, цитогенетические и молекулярно-биологические критерии также не являются абсолютными. Встречаются случаи, когда относительно далекие виды (например, почти все представители семейства кошачьих) имеют одинаковые кариотипы. С другой стороны, локальные популяции одного вида (например, обыкновенной бурозубки) могут значительно различаться по числу и форме хромосом. Разные гены также различаются по степени изменчивости. Так, например, ген ядерного белка гистона Н1 человека почти не отличается от гомологичного ему гена гороха.

Понятно, такие эволюционно консервативные (то есть практически не изменившиеся за время эволюции) гены мало что говорят о различиях не только среди близких видов, но и далеких. В то же время в геноме человека, животных и растений обнаружены чрезвычайно изменчивые повторенные последовательности ДНК, которые могут быть разными даже у родных братьев. Эти последовательности оказались незаменимыми в криминалистике для идентификации личности (геномная дактилоскопия), но малопригодными для различения видов.

Сравнительная геномика с помощью мощнейших методов компьютерного анализа анализирует и сравнивает гены и геномы разных организмов. По отбору можно судить об эволюции организмов. Есть специальные компьютерные программы, строящие дерево эволюции того или иного белка. То есть большинство белков во всех организмах почти одинаковы. За последние годы разработано несколько методов, значительно увеличивающих возможности четкого определения молекулярно-биологических критериев вида. К их числу относятся сравнение последовательностей ДНК, сравнение структур однотипных молекул белков (как физико-химическими, так и иммунологическими методами).

Почему виды не скрещиваются? Значительной преградой служит гибель гамет или их неспособность к оплодотворению при попадании к особям других видов. У многих цветковых растений чужеродная пыльца не способна прорастать на рыльцах. Это явление иногда называют физиологической или генетической изоляцией (121).

Вообще-то ничего сверхъестественного в нескрещивании нет. Чтобы разойтись в мейозе в разные гаметы гомологичные хромосомы (одинаковые, но одна от мамы, а другая от папы) должны найти друг друга и спариться. Делают они это при помощи гомологической рекомбинации. Их в мейозе слегка нарезают на кусочки и, чтобы починиться, кусочки эти ищут в геноме последовательность ДНК идентичную той, что была в месте разрыва. Находят ее, естественно, на гомологичной хромосоме. Используют ее, как матрицу, чтобы починиться, тем самым и спариваются. А заодно кусками обмениваются.

Если хромосома, например, как следует "побита" рентгеном, куски вырваны и вшиты назад задом наперед, или не в то место где раньше были, — пишут в Интернете — то спариться такая побитая хромосома с исходной не может. Поэтому она и ее гомолог разойдутся в гаметы случайным образом. Если такая хромосома одна, то в половине случаев обе гаметы получат по копии. Если таких хромосом 23 вероятность снабдить гамету полным набором хромосом ничтожно мала и потомство от скрещивания разных видов, различающихся перетасовками в нескольких хромосомах, становится бесплодным.

То есть хромосомы — это ещё один ограничитель видов. Однако хромосомные проблемы преодолеваются. Нескрещиваемость близких видов можно обойти путем увеличения кратности набора хромосом, увеличением плоидности. Например, если сделать тетраплоидность, то можно скрещивать виды, но как все это будет развиваться, зависит… После полиплоидизации, если удается найти такую комбинацию разделения и спаривания хромосом, что гены-аллели становятся комплементарны, то может образоваться новый вид.

Так, скрещивается редька с капустой если у них предварительно индуцировать полиплоидизацию того и другого. При этом набор хромосом может быть удвоен с помощью колхицина. Если включаются мобильные элементы, то возможна комбинация перераспределения генов, когда в каждой хромосоме есть партнер, с которым она может спариться в мейозе и правильно разойтись в гаметы. И наоборот, все что нужно, чтобы особи перестали скрещиваться — несколько хромосомных перестроек, чтобы бывшие гомологичные хромосомы не могли спариваться в мейозе. Если они не могут спариться, то и правильно разойтись в гаметы при мейозе не могут.

Как пишут на Интернет-форумах, "для каждой хромосомы дрозофилы созданы специальные хромосомы "противовесы", перетасованные достаточно сильно чтобы не спариваться и не рекомбинировать с диким гомологом. Хромосомы-"противовесы" используются для поддержания коллекций летальных мутаций. В нормальной хромосоме коллекционная летальная мутация, в хромосоме — "противовесе" другая летальная мутация. Потомство жизнеспособно только если получило коллекционную хромосому и хромосому противовес. Две коллекционные хромосомы — смерть. Два противовеса — смерть. А рекомбинация, в которой могла бы возникнуть хромосома, очищенная от обеих летальных мутаций не происходит. Все что нужно чтобы собрать новый "вид" дрозофилы, который не будет скрещиваться с диким — убрать из хромосом-противовесов летальные мутации и собрать муху заменив все дикие хромосомы противовесами. Причем по фенотипу эта дрозофила не будет отличаться от дикой совсем".

Итак, каждый критерий в отдельности недостаточен для определения вида, но в совокупности они позволяют точно выяснить видовую принадлежность живого организма. Вид — это классификация, где основой сейчас является генетическая совместимость. Поэтому по отношению к бактериям границы видов относительны. Поэтому их называют штаммами. Для вирусов также имеется лишь очень грубая классификация видов.

12.4. ГИПОТЕЗЫ ЭВОЛЮЦИИ

Наиболее старая гипотеза эволюции — креационизм — это система мировоззрения, основанного на религиозных догмах о неизменности созданного Творцом мира. В XVII–XVIII веках сформировались новые представления об изменяемости мира и о возможности исторического изменения видов организмов, получившие название — трансформизм. Современные богословы (101) считают, что эволюция была, но после того как бог сотворил определенное число живых существ, которые уже потом эволюционировали. Креационисты считают, что каждый род живых существ был сотворен богом, и что изменения либо уничтожают информацию, либо оставляют ее содержание низменным. Примеры, приводимые учеными, не подтверждают идеи увеличения информации и разнообразия. На самом деле, находки свидетельствуют, что животные появляются с летописи окаменелостей внезапно и уже полностью сформированными. Промежуточных форм почти не обнаруживается. Да и так называемых переходных форм крайне мало и все они весьма спорны.

12.5. АКТИВНЫЙ ОТБОР БЛАГОПРИОБРЕТЕННЫХ ПРИЗНАКОВ ПО ЛАМАРКУ

Гипотеза наследования приобретенных признаков была сформулирована Ж. Ламарком в начале XIX века. Ламарк вывел два основных закона эволюции.

«Первый закон. У всякого животного, не достигшего предела своего развития, более частое и более длительное употребление какого-нибудь органа укрепляет мало-помалу этот орган, развивает и увеличивает его и придает ему силу, соразмерную длительности употребления, между тем как постоянное неупотребление того или иного органа постепенно ослабляет его, приводит к упадку, непрерывно уменьшает его способности и, наконец, вызывает его исчезновение.

Второй закон. Все, что природа заставила особей приобрести или утратить под влиянием условий, в которых с давних пор пребывает их порода, и, следовательно, под влиянием преобладания употребления или неупотребления той или иной части (тела), — все это природа сохраняет путем размножения у новых особей, которые происходят от первых, при условии, если приобретенные изменения общи обоим полам или тем особям, от которых новые особи произошли» (97).

Совершенствуя и уточняя свою теорию, Ламарк во «Введении» к «Естественной истории беспозвоночных» дал новую, несколько расширенную редакцию своих законов эволюции.

«1. Жизнь свойственными ей силами стремится непрерывно увеличивать объем всех своих тел и расширять размеры их до пределов, установленных ею.

2. Образование нового органа в теле животного происходит от новой появившейся и продолжающей чувствоваться потребности и от нового движения, которое эта потребность порождает и поддерживает.

3. Развитие органов и сила их действия всегда зависит от употребления этих органов.

4. Все, что приобретено, отмечено или изменено в организации индивидуумов в течение их жизни, сохраняется путем генерации и передается новым видам, которые происходят от тех, кто испытал это изменение».

Жан-Батист Ламарка был уверен, что потомки получают не только фамильные черты родителей, но и все полезные качества, которыми те обзавелись за свою жизнь. Дети кузнецов, рассуждал Ламарк, выглядят крепче своих сверстников, потому что их отцы всю жизнь орудовали тяжелым молотом. Идеи Ламарка не критиковал только ленивый.

12.6. ГИПОТЕЗА ДАРВИНА

12 февраля 2009 г. исполнилось 200 лет со дня рождения Дарвина, а 24 ноября 2009 г. — 150-летие со дня выхода его главного труда «Происхождение видов». Книга Дарвина «О происхождении видов путем естественного отбора, или сохранение удачных пород в борьбе за жизнь» вышла в свет в Лондоне в ноябре 1859 года и сразу оказалась в центре внимания прессы.

Дарвин отказался от второй посылки своего предшественника — от "тяги к совершенству", и ввел в теорию эволюции иную творческую силу — естественный отбор.

Дарвин писал свой труд долгое время и постоянно сомневался в своих результатах и несколько раз их перепроверял. Но вот, в феврале 1858 года Дарвин получил письмо от А. Р. Уоллеса, жившего на Молуккских островах. Малоизвестный зоолог Альфре