Лысенко был прав! — страница 71 из 123

Другое дело, если бы эволюционирующие виды могли обмениваться опытом! Если бы все полезные открытия становились бы "общим достоянием" и могли быть использованы другими видами! Во времена Дарвина ничего не было известно о подобных механизмах. Однако сейчас уже очевидно, что горизонтальный обмен информацией между ветвями "эволюционного древа" существует! Оказалось, что геном всех эукариотов (т. е. всех животных, растений, грибов и простейших) возник в результате слияния, интеграции, симбиоза геномов нескольких разных групп бактерий. Значит, ветви "эволюционного древа" разделяются не безвозвратно и могут снова сливаться, образуя уже не дерево, а сплетение, сеть (65).

Раньше считалось, что как только вид делится на два, и между ними возникает репродуктивная изоляция, то они эволюционируют дальше сами по себе по схеме "случайные мутации плюс естественный отбор". Расчеты, однако, показали, что при такой изолированной эволюции отдельных видов на основе случайных мутаций и отбора жизнь просто не успела бы за сравнительно недолгий срок своего существования (4 млрд. лет) развиться от простейших форм до таких высокоорганизованных, как млекопитающие и человек. Важнейшее открытие последних десятилетий — явление горизонтального обмена генами, который, как оказалось, распространен в природе очень широко и вовсе не ограничивается бактериями, как думали раньше. Эукариоты тоже способны заимствовать чужие гены. Виды их могут обмениваться друг с другом наследственной информацией.

Данные геномики позволяют утверждать, что в ходе эволюции происходил горизонтальный перенос генов как внутри царств, так и между ними. Учет горизонтального обмена генами, показывает несостоятельность "традиционных" эволюционных реконструкций (69). При таком обмене формировались одинаковые признаки "независимо" (и часто почти одновременно) в нескольких разных направлениях эволюции. Если учесть горизонтальный обмен генами, то эволюция уже будет не похожа на ветвящееся дерево. На самом деле это не дерево, а сеть. На нем имеются связи между ветвями, но не как в хаотическом спутанном клубке, а как перемычки между ветвями устремившегося вверх дерева (65).

Поэтому любое "удачное изобретение" одного из видов становится доступным и может быть заимствовано всеми остальными.

Биосфера теперь представляется единой информационной средой, в которой вирусы и различные мобильные генетические элементы распространяют информацию примерно так же, как в человеческом обществе благодаря устной и письменной речи достижения и открытия одних людей становятся известными другим и могут ими использоваться (65).

Конечно, этот процесс горизонтального обмена вовсе не является бесконтрольным и неорганиченным. Он более-менее таков только у прокариот, которые, действительно, обмениваются генами достаточно свободно и в каком-то смысле могут рассматриваться как единый, огромный и невероятно полиморфный вид. Эукариоты выработали специальные сложные адаптации для того, чтобы ограничивать и контролировать этот процесс. Важнейшими из этих адаптаций являются половое размножение и репродуктивная изоляция видов (изоляция, конечно, тоже не абсолютная); собственно, именно появление полового размножения и репродуктивной изоляции и привело к формированию нового класса биологических систем — эндогамных видов. Но и эукариоты способны заимствовать чужие гены. Например, показано, как анаэробная паразитическая амеба (эукариотический организм) "позаимствовала" у бактерий гены ферментов анаэробного метаболизма (69).

Горизонтальный перенос происходит не очень часто, поэтому мы и видим сравнительно небольшой процент недавно приобретенных генов. Однако с течением эволюционного времени суммарный эффект горизонтального переноса накапливается как снежный ком (65).

12.15. СКАЧКООБРАЗНОСТЬ ВИДООБРАЗОВАНИЯ

Согласно дарвинизму, процесс видообразования (=эволюция) есть процесс непрерывный и постепенный. Но возникает закономерный вопрос, а почему нет переходных форм? Ведь практически отсутствуют переходные виды между классами (рыбы и пресмыкающиеся, пресмыкающиеся и птицы, млекопитающие и человек). Переходные формы существуют. К примеру, зубры и бизоны (и видимо вымершие туры) сильно отличаются по фенотипу, но таки еще не утратили способности скрещиваться, тоже самое относится к зебрам и лошадям (потомкам тарпанов). Но дело в том, что подобные примеры крайне редки.

При дискретном видообразовании должно быть разнообразие переходных форм, которые реально должны существовать и сейчас. Т. к. эволюционные мутации производит "природа", а не человек, то целенаправленными они быть не могут, а могут быть только случайными. Следовательно, сейчас должно существовать множество параллельных переходных видов! Куда они делись? Одним из возможных ответов является утверждение о том, что сложно найти большое количество останков. Но тогда почему отсутствуют только останки этих переходных видов?

Сам вид является дискретным понятием, как и любое понятие человеческой классификации действительности. Более того строго говоря, эволюция идет не в видах (абстракциях), а в конкретных популяциях. И собственно дискретным процессом здесь является лишь акт наследования генов конкретной родившейся особью.

Видообразование может быть основано на полиплоидизационном или хромосомном скачке, гибридизационнм скачке или на скачке, связанном с резкой активацией мутагенеза. Обмен же крупными кусками генома ещё раз доказывает, что появление видов почти всегда происходят путем качественного сказка. Самое интересное, что скачки вообще — обычное дело. Одна мутация у дрозофилы и вместо усика — нога. Одна мутация и вместо двух крыльев четыре.

Но что такое скачок? Это, прежде всего изменение числа хромосом. Полиплоидизация происходит сразу, скачком. Скачек частоты генов-аллелей обычно ассоциирован с прохождением популяции через "бутылочное горлышко" — период резкого сокращения популяции. Тот самый "имбридинг". У американских индейцев, к примеру, нет первой группы крови. Потеряли, когда переселялись в Америку.

Можно сказать, что вид есть сохранение одного и того же аттрактора. Математически аттрактор (англ. attract — привлекать, притягивать) — множество состояний (точнее — точек фазового пространства) динамической системы, к которому она стремится с течением времени. Так, наиболее простыми вариантами аттрактора являются притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением о воздух) и периодическая траектория (пример — самовозбуждающиеся колебания в контуре с положительной обратной связью), однако бывают и значительно более сложные примеры. В биологии аттрактор — это 95 % попаданий. Иногда происходит сдвиг на новый аттрактор, который долго и стабильно воспроизводится.

Итак, вид образуется скачком. Лысенко совершенно правильно говорил, что в природе наблюдается не постепенное эволюционное развитие, а революционные скачки, при которых один вид превращается в другой. Сейчас стало ясно, что во время скачка происходит гибридизационный и хромосомные скачки. Создается как бы новый аттрактор.

Скачок имеет место быть во всех трех случаях: во время полиплоидизационного скачка, во время гибридизационного скачка и во время усиленного мутагенеза. Гипотеза о постепенности изменений не верна. Никакой постепенности накопления нет. Хотя постоянно идут мутации, но они не заметны. Поэтому не верна идея постепенности — идут скачки, отбор мутаций и рекомбинаций генов (без мутаций) которые могут дать новую комбинацию признаков. Новый вид у тех, кто с половым размножением проявляется в изменении числа хромосом с сохранением притирки новой комбинации и предупреждения гибридизации мРНК. Отмечу, что в своей книге ДеФриз (148) придерживался гипотезы, говорящей о том, что эволюция происходила в результате крупных скачков, а не постепенно, как считал Дарвин. То есть Лысенко опять оказывается прав.

12.16. РОЛЬ ПОЛИПЛОИДИЗАЦИИ

Одним из способов видообразования на основе полиплоидии является так называемое "мгновенное" видообразование. Оно возможно на самом деле при быстром изменении кариотипа путём полиплоидизации. Да! Число хромосом — это важнейший ограничитель видов. Однако хромосомные проблемы преодолеваются, если нескрещиваемость близких видов обойти путем увеличения кратности набора хромосом, увеличением плоидности. Например, если сделать тетраплоидность, то можно скрещивать виды (как они будут развиваться и как будут обойдены проблемы, связанные с неправильным положением белков в хромосомах я расскажу чуть позднее).

Известны группы близких видов, обычно растений, с кратным числом хромосом. Существующие в природе естественные ряды гибридных видов растений возникли, вероятно, именно таким путем. Так, известны виды пшеницы с 14, 28 и 42 хромосомами, виды роз с 14, 28, 42 и 56 хромосомами и виды фиалок с числом хромосом, кратным 6 в интервале от 12 до 54. Например, 28 хромосомная пшеница (Triticum durum) или 42 хромосомная пшеница (Triticum vulgare). По некоторым данным, гибридогенное происхождение имеют не менее трети всех видов цветковых растений. Но то же самое найдено у мышей полевок. Полиплоидизационный механизм доказан и для некоторых видов животных, в частности, скальных ящериц, земноводных и рыб.

Как совершается скачок в числе хромосом, ведущий к образованию нового вида? Как это происходит и почему, сказать сейчас трудно. Но, видимо, новое деление числа хромосом оказывается более выгодным для нового набора белков, которые в сущности одни и те же, но их нефункциональные части как бы взаимодействуют хуже, чем раньше. Новый набор хромосом делает такое взаимодействие более удобным что ли.

Удвоение генов позволяет обходить проблему видового ограничения. Особенностью видообразования через полиплоидизацию является то, что он приводит к возникновению новых видов, всегда морфологически близких к исходному виду. Как я уже отмечал выше, при скрещивании различных видов потомство обычно бывает стерильным. Это связано с тем, что число хромосом у разных видов различно. Несходные хромосомы не могут нормально сходиться в пары в процессе мейоза, и образующиеся половые клетки не получают нормального набора хромосом.