Однако, если у такого гибрида происходит геномная мутация, вызывающая удвоение числа хромосом, то мейоз может протекать нормально и дать нормальные половые клетки. Однако не у всех потомков, а только у ограниченного их числа.
После полиплоидизации получение жизнеспособного организма возможно только в том случае, если удается найти такую комбинацию разделения и спаривания хромосом, при которой аллели генов становятся комплементарны, то есть занимают симметричные позиции в новых парах хромосом. Условием выживания после полиплоидизации является такое новое разделение парных генов, когда они оказываются в каждой новой паре хромосом и желательно в такой позиции, которая не будет вести при кроссинговере хромосом к потере гена в одной из хромосом. Тогда может образоваться новый вид. При этом новый вид приобретает способность к размножению и утрачивает возможность скрещивания с родительскими формами.
Если изменить число хромосом, то соответствующие гены-аллели не будут расходиться в новые дочерние клетки. Из-за того, что они могут располагаться не комплементарно. Например, пусть гены "А" и "а" располагаются в хромосоме 2. После изменение числа хромосом они могут оказаться в разных хромосомах. А в хромосоме 1, а "а" в хромосоме 2. Тогда возникает ситуация, что только 25 % полученных от слияния гамет зигот будут жизнеспособны. И вот тут, видимо, включается процесс использования мобильных генетических элементов.
Это может продолжаться до тех пор, пока все гены не встанут на правильные места в соответствующих хромосомах. А до этого момента многие виды переключаются на бесполовое развитие — партеногенез. Если правильное распределение генов между новыми парами хромосом не удается получить сразу, то новый вид некоторые время может размножаться партеногенетически, то есть без участия полового процесса. Например, некоторые виды кавказских ящериц, имеющих гибридогенное происхождение, триплоидны и размножаются с помощью партеногенеза.
Наличие мобильных элементов позволяет предположить, что после видового скачка и изменения числа хромосом именно стрессовая ситуация, возникающая для организма приводит к резкому увеличению подвижности мобильных элементов, что, в конце концов, может привести к тому, что все пары генов окажутся в соответствующих друг другу хромосомах. Но даже после того, как с помощью мобильных элементов гены-аллели разведены в соответствующие хромосомы еще не ясно выживет новый вид или нет. Мне кажется, что на этом этапе вступает в действие и такой фактор, как общее соответствие генотипов. Идет также подгонка генных спектров с целью исключения гибридизации молекул мРНК.
Итак, для изменения числа хромосом нужен скачок и затем проверка соответствия генома по РНК и по расхождению хромосом. То есть, в качестве нового вида будет только та комбинация числа хромосом, которая позволит получить те же гены в каждой половине генома. Скачок должен быть резкий и быстрый. Но он должен вести к такой ситуации, что, во-первых, не будет гибридизации мРНК и во-вторых, гены должны попасть хотя бы по одному соответствующему гену в каждую пару хромосом.
Другим условием появления нового вида является необходимость, чтобы соответствующие гены находились в комплементарных хромосомах и более того в комплементарных участках данной комплементарной пары хромосом. Поэтому требуется усиленный горизонтальный перенос и активация работы мобильных элементов хромосом, открытых Мак-Клинток. Новый вид может возникнуть только тогда, когда есть перенос большого числа генов и кусков ДНК. Важно также, чтобы новое число хромосом появилось у двух особей мужского и женского пола. Кроме того, для того, чтобы после хромосомного скачка появился новый вид, нужна территориальная или поведенческая или основанная на внешних признаках изоляция. Ведь после того, как какая-то часть популяции одного вида оказывается изолированной, то возникают предпочтения при половом отборе к тем признакам, которые носят представители именно данной части популяции. Тогда начинается инбридинг и потомство новой, более приспособленной пары путем инбридинга быстро вытесняет остальную популяцию, как чужаков.
Я уже писал, что "буферность" генома отсекает почти все мутации. Если же часть популяции изолируется от главной популяции и она имеет двойной ген, то достижение гомозиготности может стать шагом на пути образования другого вида. Выжить может лишь та полиплоидная популяция, которая репродуктивно будет изолирована от родительской.
Если редкие особи, несущие новую комбинацию генов, плохо совместимую с прежней, могут скрещиваться между собой или самооплодотворяться, то число их будет быстро увеличиваться. Возникает ситуация, которую эволюционисты называют инбридинг или близкородственное скрещивание. Закрепление новых сочетаний генов будет происходить быстрее и обойдется дешевле.
12.17. ГИБРИДИЗАЦИОННЫЙ МЕХАНИЗМ ВИДООБРАЗОВАНИЯ
Как же происходит образование вида согласно гибридизационной гипотезе видообразования? Работа генома может быть нарушена путем внедрения гена, который дает мРНК, которая слипается сама с собой или с другими мРНК. мРНК нового гена может склеиваться с мРНК другого гена и блокировать синтез белка на основе информации, содержащейся в мРНК. Сначала в организме накапливаются мутации, которые ведут к образованию молекул мРНК, способных к внутримолекулярному и межмолекулярному склеиванию. Сначала они гетерозиготны и рецессивны. И практически незаметны. Потом становятся гомозиготными и рецессивными, потом количество таких пар возрастает до такого уровня, что организм переходит на новый уровень гибридизационного контроля. Накопление огромного числа мутаций в подавляющем большинстве особей приводит к тому, что самые крайние особи уже не могут скрещиваться друг с другом. Они вроде бы и могут, но меньше, чем в 95 % дают полноценное потомство. Например, монголы и африканские негры, собаки: таксы и доги.
Если получаемые в результате трансляции мРНК будут склеиваться с друг с другом, то это будет нарушать работу генома, препятствуя работе генов друг с другом. Поэтому идет проверка на сопоставимость генотипов. Сопоставимость генотипов на предмет исключения склеивания мРНК, если вид этот тест проходит, то он выживает. Если учесть возможность гибридизации мРНК разных белков, то возникает возможность, что во время естественного отбора идет отбор целостных комбинаций генов, а не отдельных генов. Как подбираются наборы белков и РНК, пока не ясно. Скорее всего, постоянная изменчивость генов буферируется геномом и действием фактора гибридизации мРНК. Плохие комбинации отсекаются уже на стадии эмбриогенеза. Главным фильтром вредных мутаций и несмешиваемых комбинаций генотипов является эмриогенез, а не рецессивность.
После несмысловой мутации требуется согласование генотипов. Что это значит? Это значит, что во время эмбриогенеза, когда деспирализуются все участки ДНК и пробуются на предмет возможного синтеза все белки, клетки как бы пробуют не возникнет ли внутримолекулярная или межмолекулярная гибридизация, повреждающая функцию клетки необратимо. Особенно опасна внутримолекулярная гибридизация. Случайный белок может повредить функционированию генома, так как его мРНК может склеиваться с мРНК других белков и малых РНК. Он ведь не прошел тестирования в эволюции на предмет сопоставимости генов. Чтобы накапливались гибридизационные мутации, нужно, чтобы был удален усредняющий эффект вида и эмбриогенеза. Вид есть способ поддерживать гибридизационную чистоту генотипа.
Отбор жизнеспособных видов, видимо, шел и по пути проверки совместимости нуклеотидных последовательностей РНК. Природа подбирала комбинации аминокислот, обладающих каталитическими и регулирующими свойствами, свойствами присоединения к липидному бислою, но одновременно шел отбор комбинаций цепей нуклеотидов, чтобы не было гибридизации мРНК, рРНК и тРНК. Шла долгая подгонка комбинаций белков друг к другу. Поэтому в процессе видообразования надо белки было подобрать так, чтобы мРНК разных белков не склеивались, не подвергались гибридизации. Гибридная стерильность — это стерильность их гибридных потомков. Бесплодие при скрещиваниях между различными видами, имеющими одинаковый набор хромосом может быть связано как раз с гибридизационными осложнениями.
Видимо, имеется гибридизационное давление на вид. Он стремится к усреднению, к имбридингу. Черные любят белых, белые — черных, низкие — высоких, высокие — низких. Задача усреднить генотип и сделать вероятность успешного зачатия близкой к 95 %. Никакой конкуренции внутри вида нет и быть не может. Благоприятные мутации для внутривидового отбора не существуют. Если бы был внутривидовой отбор, то вид бы потерял стабильность и способность к размножению. Поэтому идеи программы Дом 2 (борьба всех против всех и всегда) и являются противными природе не только человека, но и всей биологии.
Отбор генов шёл на основе гибридизационной совместимости. Предположим, что имеются аллели А и Б, В и Г. Изогены А и Г несовместимы, изогены Б и В также несовместимы. Тогда выживут комбинации Б и Г или А и В. Гибридизационный скачок получается, когда у нового организма оказываются негибридизирующие гены, но при смешивании его генов с генами другой гибридизационной популяции возникают межмолекулярные гибридизионные дефекты. Когда во всех аллелях оказываются гибридизационно совместимые гены.
С точки зрения предупреждение молекулярной гибридизации ин виво, наилучший способ закрепления новой генной комбинации — это образование собственного нового вида. Видообразование — это действительно самый быстрый и эффективный способ закрепления нового адаптивного сочетания генов. Оно гораздо более эффективно, чем массовый направленный отбор в большой полиморфной размножающейся популяции, где сочетание, которому благоприятствует отбор, непрерывно разрушается в результате полового процесса; и оно, безусловно, более эффективно, чем совместное действие отбора и перемещения генов в разделенной видовой популяции, где новая форма всё ещё скрещивается со старыми.