Белки (белковые вещества) составляют основу и структуры и функции живых организмов. Белки или протеины (от греч. protos — первый, важнейший) — высокомолекулярные азотсодержащие органические вещества, молекулы которых построены из остатков аминокислот. Это органические вещества, содержащие углерод, водород, кислород, азот, серу, иногда фосфор и др. элементы. Кроме них в клетках есть ионы, сахара, липиды и конечно нуклеиновые кислоты, которые и служат носителем наследственной информации… Но об этом чуть позже.
Как правило, белки имеют очень высокий молекулярный вес. Принятые в русскоязычной литературе названия белки и белковые вещества связаны с обнаружением в тканях животных и растений веществ, имеющих сходство с белком куриного яйца. Белки это полипептиды, то есть гетерополимеры аминокислот, иногда содержащие прикрепленные к аминокислотной цепи гидрокарбоновые остатки жирных кислот или цепи моносахаридов. При гидролизе белки распадаются, сначала образуя продукты высокого молекулярного веса — альбумозы и пептоны, затем короткие фрагменты цепи аминокислот, а наконец — аминокислоты.
В конечном счете, именно белки определяют строение организма (фенотип). Белки осуществляют большинство функций клеток.
Белки играют важную физиологическую роль, выполняя множество самых разнообразных функций, характерных для живых организмов. Белки являются катализаторами, ускоряющими химические реакции в биологических системах. Питательную (резервную) функцию осуществляют так называемые резервные белки, являющиеся источниками питания для развития плода, например белки яйца (овальбумины). Транспорт кислорода осуществляется молекулами гемоглобина — белка эритроцитов. В транспорте липидов принимают участие альбумины сыворотки крови. Ряд других сывороточных белков образует комплексы с жирами, медью, железом, тироксином, витамином А и другими соединениями, обеспечивая их доставку в соответствующие органы-мишени. Белки — самая важная часть защитных систем организма.
Основную функцию защиты в организме выполняет иммунная система, которая обеспечивает синтез специфических защитных белков-антител в ответ на поступление в организм бактерий, токсинов или вирусов. Высокая специфичность взаимодействия антител с антигенами (чужеродными веществами) по типу белок-белок способствует узнаванию и нейтрализации биологического действия антигенов. Защитная функция белков проявляется и в способности ряда белков крови к свертыванию. Свертывание белка плазмы крови фибриногена приводит к образованию сгустка крови, что предохраняет от потери крови при ранениях.
Актин и миозин и множество регуляторных белков связанных с ними обеспечивают сокращение клеток. Движение органелл внутри клетки, расхождение хромосом в процессе митоза происходит с помощью микротрубочек и связанных с ними белков-моторов.
Белки выполняют структурные функции. Такие белки занимают по количеству первое место среди других белков тела человека. Среди них важнейшую роль играет коллаген в соединительной ткани, кератин в волосах, ногтях, коже, эластин в сосудистой стенке и др. Большое значение имеют комплексы белков с углеводами в формировании ряда секретов — мукоидов, муцина и т. д. В комплексе с липидами (в частности, фосфолипидами) белки участвуют в образовании биомембран клеток.
Белки выполняют гормональную функцию. Ряд гормонов представлен белками или полипептидами, например гормоны гипофиза, поджелудочной железы и др. Белки обеспечивают способность сохранять онкотическое давление в клетках и крови, ее буферные свойства, поддерживающие физиологическое значение рН внутренней среды, и др.
Подсчитано, что в природе встречается примерно 1010 — 1012 различных белков, обеспечивающих существование около 106 видов живых организмов различной сложности организации, начиная от вирусов и кончая человеком. Из этого огромного количества природных белков точное строение и структура известны у ничтожно малой части — не более 2500 (200).
I.4. ПРОСТРАНСТВЕННАЯ ОРГАНИЗАЦИЯ БЕЛКОВ
Все природные белки состоят из большого числа сравнительно простых структурных блоков, представленных мономерными молекулами — аминокислотами, связанными друг с другом в полипептидные цепи. Природные белки построены из 20 различных аминокислот. Поскольку эти аминокислоты могут объединяться в самой разной последовательности, то они могут образовать громадное количество разнообразных белков. Число изомеров, которое можно получить при всевозможных перестановках указанного числа аминокислот в полипептиде исчисляется огромными величинами. Так, если из двух аминокислот возможно образование только двух изомеров, то уже из четырех аминокислот теоретически возможно образование 24 изомеров, а из 20 аминокислот — 2,4×1018 разнообразных белков.
Нетрудно предвидеть, что при увеличении числа повторяющихся аминокислотных остатков в белковой молекуле число возможных изомеров возрастает до астрономических величин. Ясно, что природа не может позволить случайных сочетаний аминокислотных последовательностей, и для каждого вида характерен свой специфический набор белков, определяемый, как теперь известно, наследственной информацией, закодированной в молекуле ДНК живых организмов. Именно информация, содержащаяся в линейной последовательности нуклеотидов ДНК, определяет линейную последовательность аминокислот в полипептидной цепи. Образовавшаяся линейная полипептидная цепь сама теперь оказывается наделенной функциональной информацией, в соответствии с которой она самопроизвольно преобразуется в определенную стабильную трехмерную структуру. В этом преобразовании участвуют специальные белки помощники. Таким образом, лабильная полипептидная цепь складывается, скручивается в пространственную структуру белковой молекулы, причем не хаотично, а в строгом соответствии с информацией, содержащейся в аминокислотной последовательности. Блочная структура глобулярных белков отражается на процессе их сворачивания (самоорганизации).
Последовательность аминокислот сама по себе может после синтеза свертываться в трехмерные структуры, например, спираль, ленту, клубок. Но чаще образование правильной трехмерной структуры требует участия шаперонов. Шапероны — это белки, которые в нужный момент подтягивают уже свернутые цепи и сшивают их с помощью двух атомов серы, или путем склеивания-отклеивания помогают принять нужную пространственную упаковку…
После синтеза первичной последовательности (или даже в процессе синтеза) формулируются р-спирали, В-структуры, В-повороты, В-листы и т. д., которые далее поэтапно взаимодействуют, быстро образуя компактную глобулу. Альфа-структура белка — спираль, бета-структура белка — она линейна. Спирали свертываются в клубок, бета-структуры остаются линейными. Перебора других возможных упаковок практически нет. Нативная глобула обеспечивает уменьшение свободной энергии до минимума. Например, у альбумина высокая плотность отрицательных зарядов на поверхности альфа-спиралей.
I.5. КЛАССИФИКАЦИЯ БЕЛКОВ
Белки бывают мембранные, мембрано-заякоренные, растворимые секреторные, растворимые цитоплазматические. В первом случае пептидная цепь такого белка содержит достаточно короткий сегмент, который состоит из резко гидрофобных аминокислот, расположенных в пределах гидрофобной зоны липидного бислоя, и два гидрофильных сегмента, располагающихся в просвете цистерны или в цитоплазме. Во втором случае белки имеют присоединенную жирную кислоту, которая погружена в бислой и удерживает белок около него.
Надсемействами белков называют группы изофункциональных макромолекул имеющих не более 85–90 % различий первичных структур и значительно более консервативные пространственные структуры. Число надсемейств белков в живой природе не очень велико (около 500-1000), причем большинство из них возникло в эпоху первичных клеток (~3,5 млрд. лет назад) из небольшого разнообразия исходных пептидов. Поэтому разные надсемейства должны сохранять следы общих первичных пептидов. В первичных структурах ряда белков найдены небольшие сходные пептиды. Об этом же говорит наличие разнообразных прямых и инвертированных повторов внутри генов (91).
Фермент, как и любой другой белок, может состоять из нескольких субъединиц, объединенных в одно целое. Такие субъединицы, представляющие собой индивидуальные полипептидные цепи (полипептиды), могут объединяться за счет т. н., не ковалентных белок-белковых взаимодействий, или за счет ковалентных связей. Например, за счет — S-S- связей между цистеинами, (аминокислотами, содержащими — SH группу), расположенными в разных полипептидах.
В белках выделяют домены — фрагменты белка, которые имеют относительно самостоятельную третичную структуру и характерную активность. Они либо глобулярные, либо стержневидные, либо изогнуты. Эти домены связаны между собой связями.
I.6. АМИНОКИСЛОТЫ И УГЛЕВОДЫ
Аминокислоты, класс органических соединений, объединяющих в себе свойства кислот и аминов, т. е. содержащих наряду с карбоксильной группой — COOH аминогруппу — NH2. Аминокислоты играют очень большую роль в жизни организмов, т. к. все белковые вещества построены из аминокислот. Все белки при полном гидролизе (расщеплении с присоединением воды) распадаются до свободных аминокислот, играющих роль мономеров в полимерной белковой молекуле. При биосинтезе белка порядок, последовательность расположения аминокислот задаются генетическим кодом, записанным в химической структуре дезоксирибонуклеиновой кислоты. 20 важнейших аминокислот, входящих в состав белков, отвечают общей формуле RCH(NH2)COOH и относятся к аминокислотам.
Многие растения и бактерии могут синтезировать все необходимые им аминокислоты из простых неорганических соединений. Большинство аминокислот синтезируются в теле человека и животных из обычных безазотистых продуктов обмена веществ и усвояемого азота. Однако восемь аминокислот (валин, изолейцин, лейцин, лизин, фенилаланин, метионин, треонин, триптофан) являются незаменимыми, т. е. не могут синтезироваться в организме животных и человека, и должны доставляться с пищей. Суточная потребность взрослого человека в каждой из незаменимых аминокислот составляет в среднем около 1 грамма. При недостатке этих аминокислот (чаще триптофана, лизина, метионина) или в случае отсутствия в пище хотя бы одной из них невозможенсинтез белков и многих других биологически важных веществ, необходимых для жизни. Гистидин и аргинин синтезируются в животном организме, но лишь в ограниченной, иногда недостаточной, мере. Цистеин и тирозин образуются лишь из своих предшественников — соответственно метионина и фенилаланина — и могут стать незаменимыми при недостатке этих аминокислот. Некоторые аминокислоты могут синтезироваться в животном организме из безазотистых предшественников при помощи процесса переаминирования, т. е. переноса аминогруппы с одной аминокислоты на другую.