Лысенко был прав! — страница 96 из 123

Вторым отличием является прочная клеточная стенка, прилегающая к липидной (образованной из двойного слоя липидов) плазматической мембране и построенная из целлюлозы и других полисахаридов. Клеточная стенка сформирована фибриллами целлюлозы и заключена как бы в клей, который состоит из лигнина. Молекула лигнина состоит из продуктов полимеризации ароматических спиртов; основной мономер — конифериловый спирт. В клеточной стенке растений есть белки, в частности, гликопротеиды, что означает, что идет экзоцитоз (127).

Целлюлоза синтезируется вне клетки на поверхности плазматической мембраны из глюкозы с помощью фермента, привязанного к той же плазматической мембране. Молекулы этих ферментов транспортируются на плазматическую мембрану из аппарата Гольджи. Глюкоза транспортируется через плазматическую мембрану и на ней с наружной стороны от этой мембраны с помощью прикрепленного к плазматической мембране фермента образуется целлюлоза. Целлюлоза состоит из остатков глюкозы. Гемицеллюлоза из остатков также ксилозы и галактозы. У растений новая стенка, разделяющая две делящиеся клетки, не полностью сплошная, в ней из-за трубочек эндоплазматической сети, которые соединяют две клетки, формируются плазмодесмы (см. раздел 9.1).

У водорослей клеточная стенка покрыта дискретными чешуйками целлюлозы, образованными спиральным полимером и имеющим диаметр около одного микрометра.

Клетки растений похожи на кирпичики, складывающие стены зданий. При этом клетки растений растут в основном длину, так как рост в ширину ограничивают кольца из целлюлозы, как в квадратной или шестиугольной бочке с вином. В воде растительная клетка, окруженная жесткой клеточной стенкой, стабильна. Если стенку убрать, то клетку разорвут осмотические силы.

В отличие от животных у растений после мейоза его продукты делятся путем митоза и образуют многоклеточные гаметофиты: эмбриональный мешок и пыльцу. Эмбриональный мешок (женский организм) содержит яйцевые клетки, которые обладают гаплоидным набором хромосом. Они оплодотворяются ядром мужских клеток спермы пыльцы. Слияние дает диплоидные клетки нового растения. Интересно, что ещё одно ядро спермы оплодотворяет также центральные клетки, которые имеют диплоидный набор хромосом. Эти клетки становятся триплоидными и из них развиваются экстра-эмбриональные ткани, помогающие развитию зародыша во время эмбриогенеза (166).

У растений нет барьера Вейсмана, отделяющего соматические клетки от зародышевой линии клеток. Приобретенные соматические модификации растений, связанные с изменениями генов, могут в принципе передаваться потомству. У растений симбиоз с бактериями имеет свои особенности. Бактерии там размножаются во внеклеточных пространствах, попадая туда с газом или через водные поры или проникая туда через раны. Черви-нематоды протыкают ткань растения и внедряются туда. Грибы могут проникать в поверхностные клетки растений и внедрять свои отростки-гифы в клетки или между клетками. Симбиотические грибы могут изгибать плазматическую мембрану клеток растений внутрь цитоплазмы. Они могут потом жить в образованных вакуолях. В отличие от животных у растений нет подвижных иммунных клеток. Это связано с тем, что клетки растений не могут активно передвигаться. Растения имеют своеобразную иммунную систему, которая состоит из двух частей: 1) первая распознает и реагирует на молекулы, которые являются общими для многих бактерий, живущих на растениях, 2) вторая реагирует на повреждающие факторы, выделяемые бактериями. Пока точно не известно, как растения добиваются прекращения роста патогенных микроорганизмов (179).

I.18. ПЛАЗМОДЕСМЫ

Как я уже писал в своей книге "Дело генетиков", в учебнике российском для лесотехнических специальностей вузов (17) хотя межклеточные мостики на схеме растительной клетки изображены, но они в тексте не упомянуты. Нет в этом учебнике ни слова о заслугах Лысенко в агробиологии, хотя в западных учебниках об этом есть упоминание (хуже всего быть пророком в своем отечестве — С. М.).

В учебнике молекулярной биологии клетки Альбертса с соавторами (127) сказано, что растительные клетки соединены специальными цитоплазматическими мостиками диаметром 20–40 нанометров или плазмодесмами. Каждая из них, как правило, содержит десмотрубочку, соединяющее эндоплазматические сети (как я уже писал, это особые органеллы клетки, где происходит синтез белков) соседних клеток. Вирусы и информационная мРНК могут передвигаться через плазмодесмы. Зачем там находится мембранная трубочка эндоплазматического ретикулума, не ясно. Мостики, видимо, рвутся при высыхании, и клетки отделяются.

В русском переводе учебника Альбертса (127) описание плазмодесм очень ограничено. Там не сказано ни о функции плазмодесм, ни о том, что за часть эндоплазматического ретикулума образует трубочку, проходящую внутри плазмодесмы, не указаны белки, ответственные за формирование плазмодесм, а ведь без этого нельзя понять, могут ли формироваться плазмодесмы между разными уже разделившимися растительными клетками. А если возможно, то каков механизм. Самое интересное, что сейчас наука точно не знает функционального предназначения плазмодесм. Видимо, плазмодесмы нужны для прокачки жидкости между клетками растений. Кроме того результаты вегетативной гибридизации доказывают, что клетки, размножающиеся в месте подсадки привоя к подвою способны образовывать между собой плазмодесмы.

Если о растительном синцитии и транспортировке информационной РНК ещё кто-то из генетиков знает, то вот о том, что после прививки (вегетативной гибридизации) клеточные системы подвоя и привоя, скорее всего, становятся едиными, знают единицы. По крайней мере, об этом ничего не написано в российских и западных учебниках. Не нашел я там и описания транспорта информационной ДНК по плазмодесмам, что лишь совсем недавно установлено учеными.

I.19. ОДНОКЛЕТОЧНЫЕ ОРГАНИЗМЫ

Теперь несколько слов об одноклеточных организмах. К одноклеточным относятся эукариоты и прокариоты. У одноклеточных эукариотических, то есть содержащих ядро, организмов нет разделения "соматические" и "половые" клетки. Их единственная клетка является одновременно и половой, и соматической, и любые произошедшие в ней изменения генов, естественно, передаются потомкам.

В целом общий план строение одноклеточных эукариотов сходен либо с клетками животных, либо с клетками растений. Поскольку в мире существует огромное число видов одноклеточных организмов, то даже перечисление особенностей

Гены у одноклеточных организмов изменяются довольно часто. И это не только мутации. У них очень широко распространен горизонтальный обмен генетическим материалом. У одноклеточных организмов единственная клетка одновременно оказывается и половой, и соматической, так что любые произошедшие с ней изменения немедленно передаются потомкам. А гены у одноклеточных организмов меняются довольно часто. И не только из-за мутаций. У них очень широко распространен так называемый горизонтальный обмен генетическим материалом.

I.20. ПРОКАРИОТЫ

Бактерии гораздо мельче клеток многоклеточных растений и животных. Толщина их обычно составляет 0,5–2,0 мкм, а длина — 1,0–8,0 мкм. Бактерии имеют плазматическую мембрану и достаточно бесструктурную цитоплазму, где располагаются белки, РНК и ДНК, которые хромосом не образуют. В плазматической мембране встроены специальные белки, которые качают через эту мембрану другие белки наружу, ферменты для изменения внеклеточной среды и ионы наружу и внутрь и низкомолекулярные высокоэнергетические молекулы, которые прокариоты используют для питания. Бактерии часто имеют добавочную клеточную стенку, для увеличения прочности конструкции. Бактерии делятся путем образование перемычек между дочерними клетками. Делению бактерии предшествует удвоение кольцевой двойной ДНК.

ПРИЛОЖЕНИЕ II. МОЛЕКУЛЯРНАЯ БИОЛОГИЯ ПРОЦЕССОВ НАСЛЕДОВАНИЯ

II.1. ХРОМОСОМЫ

Как же записана и перерабатывается информация, записанная в геноме? Давайте проследим путь, который проходит наследственная информация от последовательности нуклеотидов до проявления признака.

В ядре расположен генетический материал. Он в большинстве организмов представлен несколькими гигантскими молекулами-гетерополимерами (то есть единички этого полимера разные) дезоксирибонуклеиновой кислоты (ДНК).

Изначально, во времена господства формальной генетики, хромосомами (цветные тела) назывались хорошо окрашиваемые включения в ядре эукариотической клетки, которые становятся легко заметными в определённых фазах клеточного цикла (во время митоза или мейоза). В хромосомах сосредоточена большая часть наследственной информации.

Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия все чаще говорят о бактериальных хромосомах. В настоящее время под хромосомой понимается двойная цепочка ДНК, состоящая из дезоксирибонуклеотидов и содержащая некое очень большое количество генов, каждый из которых кодирует белок (это неверно, но я намеренно упрощаю картину).

Это определение существенно отличается от того понятия хромосома, которое использовалось в годы борьбы Лысенко с формальными генетиками. В те годы считалось, что хромосом у бактерий нет, поскольку молекулы ДНК в бактериях не были видны в световой микроскоп. Поэтому формальные генетики были склонны считать, что генов у бактерий нет. Если же принять настоящее определение хромосомы, то окажется, что у бактерий хромосомы есть.

Число хромосом различно у разных организмов. Общая длина 46 хромосом человека 190 см. Каждая хромосома в интерфазном ядре занимает определенное место в ядре. Хромосомы не перевиваются, не перепутываются. Это позволяет им быстро подвергаться спиралевидной трансформации. Хромосомы прикреплены к внутренней стороне ядерной оболочки. Опыт построения хромосомных карт, казалось, твердо указывал, что положение генов на карте устойчиво наследуется. После открытия мобильных элементов генетический материал генома условно разделили на устойчивый и на подвижный (92).