ение смолы и уносится вместе с горячими газами и частицами сажи. И хотя температура теплового щита поднимается до 2000 °С, космонавты внутри корабля этого не ощущают.
Спускаемые аппараты Apollo 13, ARD, HSRC; «Восток-1» (корабль Юрия Гагарина) после посадки. NASA, ESA, JAXA; фото автора
Разница между теплозащитой кораблей состоит в структуре композита, пропорциях материалов и процессе изготовления: в «Союзе» формуют весь щит целиком в вакуумном автоклаве, пропитывая смолой стеклоткань. В Apollo использовалась стеклотканевая сотовая структура, которая вручную заполнялась эпоксидкой – каждая ячейка отдельно. Сегодня подобную конструкцию используют для нижнего теплового щита корабля Orion.
Больше различий в строении теплозащиты на боковых стенках кораблей, внешний вид которых после приземления и сравнивается. Примерно две трети площади стенок «Союза» покрыто слоем фторлона (российское название тефлона) толщиной от 2 до 5 мм. Это пластик, который плавится при температуре 330 °С и сгорает при температуре 420 °С. Именно благодаря ему «Союз» выглядит так, будто его хорошо прожарили адским пламенем. Иногда на кораблях после посадки можно увидеть, что обгоревший пластик местами сорван и под ним светлая поверхность теплозащиты, которая даже не обгорела.
Если присмотреться внимательнее к российским кораблям, то можно увидеть, что часть «Союза» практически не повреждена высокой температурой, это говорит о неоднородном атмосферном нагреве. Местами температура внешних стенок корабля намного ниже, чем максимальный жар, о котором чаще всего упоминают в описаниях процесса посадки.
У Apollo конструкция теплозащиты была примерно одинаковой по всей поверхности корабля, различаясь только по толщине слоя. Но бока командного модуля Apollo с внешней стороны дополнительно обклеивались многослойной «фольгой» экранно-вакуумной теплоизоляции, которая защищала корабль от перегрева солнечными лучами в вакууме. Подобным образом обклеивались блестящей теплоизоляцией и советские космические корабли «Восток» и «Восход». Видно, что верхняя часть сферических космических кораблей испытала наименьшее воздействие атмосферы и сохранила остатки теплоизоляции, даже несмотря на перегрузки и нагрев, которые были выше, чем у возвращавшихся от Луны кораблей американцев.
Более интенсивный нагрев и перегрузки околоземных сферических спускаемых аппаратов при вхождении в атмосферу связаны с их формой: «Востоки» и «Восходы» совершали неуправляемый баллистический спуск, который был короче, но приводил к большим нагрузкам, чем у лунных Apollo с плоским днищем.
Сейчас подлинные сферические спускаемые аппараты ранней истории отечественной космонавтики можно увидеть в музеях космонавтики разных городов. Например, в музее РКК «Энергия» в подмосковном Королеве или калужском музее истории космонавтики имени К. Э. Циолковского. Серебристые шестиугольники экранно-вакуумной теплоизоляции сохранились даже на историческом «Востоке-1», который вывел первого человека – Юрия Гагарина – на околоземную орбиту. Обычно спускаемый отсек «Востока-1» хранится в музее РКК «Энергия», но периодически его выставляют на временных выставках в Москве.
У Apollo «фольга» хоть и пострадала, но сохранилась примерно на двух третях всей поверхности, что также говорит о неравномерности воздействия воздуха на боковую поверхность спускаемого аппарата. Причина, по которой боковые поверхности Apollo сохраняются лучше, чем поверхность «Союзов», – геометрия корабля.
Спускаемые отсеки кораблей «Союз» и китайского Shénzhōu, а также межпланетные спускаемые аппараты «Зонд» и Chang'e 5-T1 спроектированы по схеме, которую советские конструкторы назвали «фара» за сходство профилей. Они представляют собой колоколообразные отсеки с наклоном стенок около 7 градусов, т. е. их форма близка к цилиндрической. Максимальный диаметр «фары» в донной части, в месте крепления лобового теплозащитного экрана, а минимальный – наверху, в области переходного люка.
Форма кораблей Apollo и Orion, а также автоматических зондов Европы ARD и японского HSRC намного ближе к усеченному конусу. Угол наклона стенок Apollo составлял 32,5 градуса. Такая форма влияет на степень воздействия газов и плазмы, которые срываются с края лобового теплозащитного экрана и уносятся потоком воздуха. Чем плотнее поток воздуха прижимается к поверхности космического аппарата, тем большее воздействие он может на нее оказать и тем больше сажевых частиц с теплового щита может попасть на боковые стенки корабля. Больший наклон стенок Apollo приводит к тому, что корпус находится как бы в тени теплового щита, который закрывает от наиболее интенсивных струй воздуха и горячей плазмы.
Разница формы ударной волны в воздухе в зависимости от формы спускаемого аппарата. Слева – моделирование спуска Apollo на скорости 4,4 Маха, справа – «Союза» на скорости 5 Махов. NASA, University of Manchester
По данным разработчиков «Союза», максимальная температура внешней стороны боковой стенки корабля при спуске не превышает 700 °С, и только в одном месте – на выступающем блоке двигателей ориентации – она достигает 1000 °С. Теплозащиту корабля Apollo испытали еще до пилотируемых запусков, в 1967 году. Тепловые датчики, размещенные в бортах спускаемого аппарата Apollo 4, показали нагрев не выше 400 °С. Разумеется, разработчики «Союза» понимали, что стенки будут сильно нагреваться, но геометрия была вынужденная – ради увеличения полезного пространства и из-за ограничений по максимальному диаметру космического корабля, которых не было у создателей Apollo.
Схематические эскизы обтекания воздушными потоками спускаемых аппаратов «Союз» и Apollo по результатам численного моделирования. Rakhab C. Mehta
Спускаемый аппарат «Зонда-7» в Демонстрационном зале кафедры «Космические аппараты и ракеты-носители» (СМ-1) Дмитровского филиала МГТУ им. Н.Э. Баумана. Экскурсию проводит заведующий лабораторией, старший преподаватель кафедры Геннадий Кулиш. Съемка со стороны аппарата, наименее подверженной атмосферному воздействию. Фото автора
Пожалуй, самый сильный нагрев спускаемого аппарата класса «Союза» за всю историю космонавтики произошел 21 сентября 1968 года во время посадки прототипа космического корабля «Зонд-5». Спуск проходил на скорости возвращения с Луны и по баллистической траектории, что привело к максимально допустимым нагрузкам и нагреву. Сейчас этот спускаемый аппарат экспонируется в музее РКК «Энергия», где его можно осмотреть и убедиться, что оплавился он только в местах, проклеенных фторлоном, а под тонким слоем пластика – практически не пострадавшая теплозащита.
По сравнению с «Зондом-5» посадка следующего успешного «Зонда-7» была менее экстремальна: управляемая посадка на территорию СССР, двойной вход в атмосферу Земли, более пологая траектория спуска. Однако это все равно было возвращение со второй космической скорости. Сегодня спускаемый аппарат «Зонда-7» хранится в Демонстрационном зале МГТУ им. Н. Э. Баумана в поселке Орево Дмитровского района Московской области. Там можно подробно изучить состояние обшивки космического аппарата и убедиться, что она в хорошей сохранности. Состояние спускаемого аппарата кажется даже лучше, чем у околоземных «Союзов».
Китайский опыт также показывает, что возвращение от Луны на второй космической скорости не способно превратить космический корабль в обугленную головешку. В 2014 году Китайское космическое агентство провело испытание спускаемого аппарата на второй космической скорости. Космический зонд Chang'e 5-T1 обогнул Луну, вернулся в околоземное пространство и сбросил в атмосферу Земли спускаемый аппарат. Его диаметр составлял примерно 110 см, т. е. половину диаметра «Союза» или «Зонда», геометрия корпуса тоже была очень похожа. Точно так же, как и «Союз», Chang'e 5-T1 обгорел только с одной стороны и в значительной степени сохранил внешнюю теплозащиту и даже белую краску, которой был выкрашен перед стартом для защиты от перегрева в вакууме. Сотовая структура нижележащего теплозащитного слоя похожа на тот, что покрывал корабли американцев, чей опыт применили китайские разработчики, а использованный материал – углеродно-кремниевый композит.
Космический спускаемый аппарат только выглядит тяжелым и тупым предметом, который может лететь лишь отвесно вниз. На больших скоростях плоское днище космического корабля, закрытое теплозащитным экраном, способно играть роль крыла, обладающего подъемной силой. Благодаря хоть и небольшой, но значительной на больших скоростях подъемной силе, можно управлять полетом космического корабля в атмосфере и увеличивать длину траектории аэродинамического торможения. Управление обеспечивается малыми ракетными двигателями системы ориентации, которые могут отклонять корабль под разными углами к потоку воздуха.
Чем длиннее траектория торможения, тем меньшие нагрузки переживает экипаж и конструкция корабля. Сферические «Востоки» и «Восходы» не обладали такой способностью, поэтому они просто «падали» по баллистической траектории, и космонавты переживали десятикратные перегрузки. Для «Союза» же существует штатная траектория спуска, когда перегрузки достигают четырех-пятикратного значения, а на баллистическом спуске достигают восьми единиц. В лунных полетах Apollo максимальное значение перегрузок не превышало семи единиц, т. е. посадка всегда была управляемой, а не баллистической.
Способность космического аппарата маневрировать в атмосфере зависит от его аэродинамического качества, которое определяется отношением подъемной силы к лобовому сопротивлению, действующему на аппарат. Самолеты обладают аэродинамическим качеством выше единицы, т. е. могут совершать планирующий полет и посадку. Такую возможность в космонавтике имели челноки Space Shuttle и «Буран». Ни «Союз», ни Apollo не могут сесть как самолет, но им доступен так называемый скользящий полет. У американского корабля эти возможности шире за счет большей в три раза площади теплового щита. Это значит, что Apollo был способен дольше находиться в атмосфере и эффективнее рассеивать энергию, не допуская чрезмерного нагрева и высоких перегрузок.