Спускаемый аппарат космического корабля Boeing Starliner после возвращения с низкой околоземной орбиты. Температурное воздействие видно только в правой части аппарата. NASA
Есть еще один показатель, который влияет на полет спускаемого аппарата и его нагрев, – баллистический коэффициент, т. е. отношение площади теплового щита к массе аппарата. Чем выше этот показатель, тем эффективнее атмосферное торможение. Так, два космических аппарата с одинаковым размером, формой и скоростью, но разной массой будут по-разному взаимодействовать с атмосферой. Понятно, что более легкий аппарат будет эффективнее терять скорость, чем тяжелый.
На конкретном примере можно сравнить спускаемые аппараты Orion, Apollo и ARD. Их размеры 5,3 м, 3,9 м и 2,8 м соответственно; различается и масса, но баллистический коэффициент меняется незначительно: 25, 22 и 21. То есть их взаимодействие с атмосферой по баллистическому коэффициенту будет примерно одинаковым, и разницу определяет только скорость.
Если же сравнить летавшие спускаемые аппараты типа «фара», то сразу можно заметить значительную разницу между «Зондом» и Chang'e 5-T1. Аппараты имеют одинаковую форму, но из-за разницы их массы – почти трехкратную разницу баллистического коэффициента. Китайский зонд претерпевал значительно меньшие перегрузки и нагрев, чем советский. По этому показателю Chang'e 5-T1 ближе всего к американскому Orion и японскому HSRC, хотя их форма различна.
Таким образом, разница во внешнем виде приземлившихся спускаемых аппаратов «Союз» и Apollo объясняется разницей в теплозащите кораблей и их геометрией, которая влияет на аэродинамические характеристики аппаратов.
МАТЕРИАЛЫ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ
Книга по истории американских скафандров (на английском языке) U. S. Spacesuits (Kenneth S. Thomas, Harold J. McMann)
Техническое описание и результаты проекта ARD
Техническое описание и результаты проекта HSRC
Численное моделирование процесса входа в атмосферу спускаемых аппаратов ARD и «Союза»: Effect of geometrical parameters of reentry capsule over flowfield at high speed flow
Численное моделирование базового давления и сопротивления космических спускаемых аппаратов на высокой скорости: Numerical Simulation of Base Pressure and Drag of Space Reentry Capsules at High Speed
Численное моделирование процесса входа в атмосферу спускаемого аппарата ARD: Analysis of Radio Frequency Blackout for a Blunt-Body Capsule in Atmospheric Reentry Missions
О советской лунной программе «Ракетно-космическая корпорация "Энергия" имени С. П. Королёва. 1946–1996». Меносовполиграф, 1996
После Apollo
Почему люди больше не летают на Луну?
КРАТКИЙ ОТВЕТ: «Лунная гонка» стала результатом холодной войны, и единственным мотивом, который побудил США начать программу Apollo, была политическая конкуренция с Советским Союзом. После завершения «лунной гонки» в мире ни разу не возникало конкуренции такого масштаба. Никакие иные мотивы, кроме политических, не способны побудить государство выделить соответствующее финансирование.
Текст данной главы первоначально вышел на научно-популярном портале «Чердак» – издании ТАСС.
Публикуется в авторской редакции.
tass.ru/tech/6820763
14 декабря 1972 года американский астронавт Юджин Сернан произнес роковые слова: «Мы делаем последний шаг с поверхности Луны, возвращаемся домой, чтобы однажды вернуться – в не очень далеком будущем – с миром и надеждой для всего человечества», – затем зашел в модуль Challenger, закрыл люк, и человечество покинуло Луну. За прошедшие полвека ни одного пилотируемого межпланетного полета не было.
Сегодня политики, бизнесмены, астронавты много говорят о полетах на Луну и Марс, но человек по-прежнему не удаляется от Земли более чем на 425 км – максимальную высоту орбиты Международной космической станции. Немного выше забирались Space Shuttle, когда ремонтировали космический телескоп Hubble. Все это кажется ничтожно малым по сравнению с лунными достижениями 1968–1972 годов.
Утрата всякого реального интереса у пилотируемой космонавтики к полетам на Луну и далее даже становится основой для целого ряда теорий заговора. Кто-то считает, что полетов вообще не было, а эпохальные кадры сняты в голливудском павильоне. Кто-то полагает, что посланцы человечества на Луне встретились с чем-то таким, что навсегда отвадило их от полетов, например запрет инопланетян на исследование Луны.
Причина же прекращения полетов людей на Луну тесно связана с причиной, по которой люди когда-то на нее отправились. Сегодня, если заходит речь о необходимости полетов людей на естественный спутник Земли, перечисляются разные мотивы:
● научные: изучить грунт, лунные пещеры, построить обсерватории;
● технические: использовать Луну для производства топлива и элементов космических аппаратов или как базу для освоения Солнечной системы;
● экономические: добывать гелий-3 и другие полезные ископаемые, налаживать туризм;
● политические: утвердить свое присутствие, расширить территорию своего государства за пределы Земли.
Однако эти основания оторваны от научных, экономических и политических реалий. Научные задачи успешно выполняют беспилотные космические аппараты: окололунная среда и поверхность изучались и изучаются зондами США, Китая, Индии, Японии. Китай совершил посадку двух луноходов в 2013 и 2019 годах и планирует осуществить доставку грунта. Россия готовит серию зондов в приполярные регионы, где предполагается обнаружить и исследовать лунный водяной лед и другие летучие соединения. Есть планы и у других государств и частных компаний. Стоимость автоматических станций в десятки раз дешевле пилотируемых запусков.
Конечно, астронавты Apollo сделали для науки невероятно много. Благодаря собранному грунту удалось установить происхождение Луны и получить фундаментальные данные по эволюции Солнечной системы. Добытые образцы и другие материалы анализируются по сей день. С другой стороны, практически все эти задачи можно было решить автоматическими средствами и с намного меньшими затратами. Советский Союз так и сделал, когда понял, что пилотируемая программа слишком сложна.
Конечно, советские автоматы сделали меньше, если сравнить массы доставленного грунта: 382 кг из шести мест от Apollo против 326 г из трех мест от советских «Лун». Сравнение же комплекса всех проведенных экспериментов показывает большое сходство: биологические эксперименты, исследование радиации, солнечного ветра, картографию реализовали программой «Зонд», а геологию, геоморфологию, буровые работы провели луноходами и посадочными станциями. Например, по глубине буровых работ астронавты обогнали советские станции всего на полметра.
Размещать на Луне гигантские оптические телескопы – не лучшая идея, поэтому и перспективы лунной астрономии туманны в прямом смысле слова. Хотя окололунная среда с инженерной точки зрения представляет собой вакуум, он не отличается высокой чистотой. Луна обладает очень разреженной атмосферой и окутана клубами тонкой пыли, которая поднимается из-за метеоритной бомбардировки и электростатических эффектов на поверхности. А на стороне Луны, обращенной к Земле, мешает еще и наша планета своим ярким светом. Для оптической астрономии более приемлемым оказывается использование орбитальных телескопов на околоземной орбите или в точках Лагранжа. Луна открывает некоторые перспективы для радиоастрономии, но их недостаточно, чтобы отправлять туда пилотируемые экспедиции. Как раз китайская автоматическая станция Chang'e 4 стала первым радиотелескопом на обратной стороне Луны, когда раскрыла три пятиметровые антенны.
Три антенны, развернутые по трем осям под углом 90 градусов друг к другу, сделали Chang'e 4 радиотелескопом сверхдлинноволнового диапазона. CNSA/CLEP
В конце концов, телескопы можно доставить на Луну теми же роботизированными аппаратами. Например, Китай так и сделал: Chang'e 3 нес на борту ультрафиолетовый телескоп, который наблюдал околоземную плазмосферу и объекты далекого космоса. А Chang'e 4 доставил на обратную сторону Луны сверхдлинноволновой радиотелескоп, который наиболее эффективен в месте, сокрытом от радиошумов Земли.
Экономические перспективы Луны пока тоже весьма иллюзорны. Изотоп гелий-3, о котором часто вспоминают в контексте будущего освоения Луны, на сегодня не востребован в экономике Земли настолько, чтобы обеспечить рентабельность добычи даже на Земле, не говоря о Луне. Сейчас гелий-3 вырабатывается как побочный продукт производства и хранения радиоактивного изотопа водорода – трития. Рыночная стоимость гелия-3 составляет около $30 000 за литр, чего недостаточно для окупаемости лунной добычи. Добыча 1 кг гелия-3 потребует переработки 100 000 т лунного реголита. Для сравнения: это загрузка более двухсот самых грузоподъемных карьерных самосвалов БелАЗ. Пока не освоена экономически выгодная управляемая реакция термоядерного синтеза на основе гелия-3, ни о каких экономических перспективах лунных шахтеров не может идти речи.
И самый разочаровывающий факт о гелии-3 – он есть на Земле в составе природного газа. Содержание его там очень мало и выделение сложно, поэтому пока этим никто не занимается. По некоторым данным, добыча гелия-3 из земного природного газа станет рентабельной тогда, когда его цена за литр поднимется до $100 000, но для рентабельности лунной добычи эта цена будет на много порядков больше.
Окупаемость лунного туризма точно так же не просматривается. В настоящее время две компании предлагают возможность посещения окололунной орбиты без посадки за $75–120 млн – это российская РКК «Энергия» и американская SpaceX. Пока ни один турист еще не слетал. По словам представителей РКК «Энергия», заинтересованность отдельных клиентов есть, но, чтобы полеты стали экономически выгодными, нужно хотя бы десять заказчиков, пока нашлось только восемь. Представители SpaceX сообщали о двух заинтересованных клиентах. Позже нашелся один японский миллиардер, который заказал один полет сразу нескольких человек на космическом корабле Starship, но пока такой корабль не готов, и неизвестно, какова будет цена за билет и сколько еще миллиардеров захотят его приобрести. Полет с посадкой на поверхность обойдется в несколько раз дороже.