Обратим внимание на то, что в наших примерах с паровозом и двигателем часть теплоты передается с выхлопом в окружающее пространство, рассеивается в воздухе. Это и является первым подтверждением вывода о невозможности полного превращения теплоты в работу. Мы постоянно наблюдаем, что при различных видах работы часть энергии выделяется в виде тепла. Обобщая наблюдения, мы можем сделать вывод о том, что в природе существует тенденция к необратимому превращению различных видов энергии в теплоту. На это впервые указал в 1852 г. английский ученый У. Томсон (1824-1907) в работе «О проявляющейся в природе общей тенденции к рассеянию механической энергии».
Не менее важные следствия вытекают из также хорошо известного факта, что нагретые тела всегда стремятся прийти в состояние равновесия с окружающими телами, атмосферой. С течением времени остывает нагретый чайник или утюг, отдавая свое тепло. Но и в этих процессах передачи теплоты также существует односторонность, которую Р. Клаузиус сформулировал в качестве тепловой аксиомы: «теплота не может сама собой переходить от тела холодного к телу горячему». Ее значение оказалось настолько важным, что вскоре эту аксиому стали рассматривать как одну из формулировок второго закона термодинамики:
«Наряду с общим принципом (законом сохранения и превращения энергии. — О. С.) механическая теория тепла поставила второй, малоутешительным образом ограничивающий первый, так называемый второй закон механической теории тепла. Это положение формулируется следующим образом: работа может без всяких ограничений превращаться в теплоту; обратное превращение тепла в работу или совсем невозможно, или возможно лишь отчасти. Если и в этой формулировке второй принцип является неприятным дополнением к первому принципу, то благодаря своим последствиям он становится гораздо фатальнее».
Простые рассуждения убедят нас в справедливости этого неожиданного и, прямо скажем, малоприятного вывода. Тенденция к превращению различных видов энергии в теплоту, невозможность обратного полного превращения теплоты в полезную работу, установление теплового равновесия между нагретыми телами — все это приводит к представлению о том, что в некотором отдаленном будущем все виды полезной энергии превратятся в теплоту, которая равномерно распределится между всеми телами. Наступит состояние так называемой «тепловой смерти», когда, несмотря на обилие энергии, мы не сможем обратить ее в полезную работу. Поразительно, что изучение особенностей тепловых явлений привело нас к выводам, совпадающим с религиозными представлениями о «конце света». Выводы науки вновь самым теснейшим образом сомкнулись с жизнью.
Оставим до конца параграфа обсуждение философских выводов из второго закона термодинамики. Пока же обратим внимание на то, что необратимость тепловых явлений логически противоречила попыткам их объяснения на основе корпускулярной теории, поскольку законы механики полностью обратимы. Следовательно, или объяснение тепловых явлений на основе корпускулярной теории является неправильным, или не верен сам второй закон. В первом случае мы можем связать возникшее противоречие с гипотетичностью существования атомов или даже усматривать в нем доказательство несправедливости атомной гипотезы. Во втором случае можно оспаривать справедливость второго закона термодинамики, что также предпринималось некоторыми учеными. Но существует и третий путь — путь глубокого изучения сущности тепловых явлений, анализа различий между обратимыми и необратимыми процессами. Именно по этому пути пошли Р. Клаузиус и У. Томсон.
Анализ особенностей тепловых процессов, выполненный Р. Клаузиусом, был далеко не очевиден. Обратив внимание на то, что формулировка второго закона термодинамики носит качественный характер, Клаузиус задался целью найти его математическую форму. Он считал необходимым связать второй закон с некоторой характерной физической величиной, подобно тому как первый закон оказался связан с существованием энергии, явился законом ее сохранения и превращения. К чести Клаузиуса надо отметить, что поставленную перед собой задачу он выполнил, оставив следующим поколениям физиков проблемы понимания физической сущности введенного им нового научного понятия, строгого обоснования найденных им математических формулировок второго закона, логической увязки обратимости механических процессов с необратимостью тепловых.
Для того чтобы понять ход рассуждений Клаузиуса, необходимо внимательно проанализировать работу теплового двигателя. Пар двигателя паровоза, расширяясь, толкает поршень, соединенный с колесами, приводя таким образом весь состав в движение. Чтобы вновь получить полезную работу, необходимо снова сжать рабочее тело. Если бы мы стали сжимать пар при той же температуре, при которой он расширялся, то на сжатие мы затратили бы точно такую же работу, что была получена при расширении. Для того чтобы работа, затрачиваемая на сжатие пара, была меньше работы, получаемой при его расширении, необходимо производить процесс сжатия при более низкой температуре пара. Следовательно, для получения полезной механической работы принципиально необходимо вовлекать в процесс третье тело — «холодильник», отдавать в каждом цикле ему часть теплоты. В нашем случае роль такого холодильника выполняет атмосфера, куда происходит сброс отработанного пара. Но если часть энергии передается холодильнику, то 100%-ное превращение теплоты в работу при работе тепловой машины принципиально невозможно. Максимальный коэффициент полезного действия (КПД) η идеальной тепловой машины, как впервые показал С. Карно, определяется соотношением
где T1 — температура нагревателя, T1 — температура холодильника. КПД тепловой машины может быть представлен также в виде
где Q1 — теплота, переданная от нагревателя к рабочему телу, Q2 — теплота, отданная холодильнику. Объединяя выражения (9) и (10), получим:
Воспользуемся полученным результатом для графического анализа цикла работы идеальной тепловой машины (рис.6). На участке 1-2 газ, находящийся в цилиндре машины, расширяется и производит при этом работу А. На этой стадии нагреватель отдает, а газ получает теплоту Q1, равную работе расширения газа. Сам газ при этом не нагревается и не остывает (такие процессы, происходящие при постоянной температуре, называются изотермическими). Расширение газа происходит и на стадии 2-3, но работа при этом производится за счет уменьшения внутренней энергии газа, его охлаждения от температуры нагревателя T1 до температуры холодильника Т2. Следующим этапом цикла является изотермическое сжатие газа (кривая 3-4). На это сжатие должна быть затрачена работа, но вследствие изотермичности процесса она полностью переходит в теплоту Q2, передаваемую холодильнику. Цикл работы машины завершается сжатием газа до исходного объема V1, затраченная при этом работа идет на нагревание газа до исходной температуры Т1, т, е. на увеличение внутренней энергии газа.
Из (11) видно, что отношение Q/T одинаково для обеих изотерм процесса.
Рассмотрим теперь произвольный циклический процесс (рис.7), верхнюю и нижнюю половину которого можно рассматривать как два возможных, но различных пути перехода тела из состояния 1 в состояние 2. Рассечем наш произвольный цикл сетью адиабат (адиабатными называются процессы, при которых газ не отдает и не получает теплоту, их аналогом были стадии 2-3 и 4-1 цикла на рис. 6). Каждый малый отрезок цикла между адиабатами можно в первом приближении рассматривать как изотермический и применять к нему соотношение (11). Следовательно, мы можем записать:
где ΔQ и T относятся к верхней половине процесса, а ΔQ’ и T’ — к нижней. Просуммируем эти равенства по всем отрезкам:
Очевидно, что
Получен интересный результат. Для произвольных, но обратимых процессов изменение величины
при возвращении тела в исходное состояние равно нулю:
На пути 1-2 изменение ∑ΔQ/T равно по модулю и противоположно по знаку изменению ∑ΔQ/T пути 2-1. Но тогда можно записать и такое равенство:
т. е. утверждать, что состояния 1, 2 или любое другое характеризуются некоторым значением величины S1, S2, подобно тому как они имеют определенные энергии E1, Е2и т. д. Эту новую характеристику состояния Клаузиус предложил называть энтропией, от греч. «тропэ» — превращение.
Однако полностью обратимые процессы являются лишь физической идеализацией, так как в любых реально протекающих процессах всегда существуют, как мы это уже показали, необратимые потери энергии (при нагревании трущихся поверхностей, связанные с выхлопом части нагретого пара в окружающее пространство и т.д.). Естественно, что для необратимых процессов закон сохранения энтропии уже не имеет места, и изменение энтропии замкнутой системы можно рассматривать как меру необратимости совершившегося в ней процесса. В приведенных примерах окружающая среда может считаться бесконечно большой, т. е. ее температура при передаче ей теплоты не изменяется. Следовательно, в необратимых процессах изменение энтропии внешней среды ΔS >0. Именно так выглядит в трактовке Клаузиуса второй закон термодинамики.