Магия чисел — страница 15 из 29

Если разделить 679 на 20, выйдет примерно 34. Усреднение 20 и 34 дает приблизительную оценку 27, но есть вариант получше. Если вы знаете, что 25 в квадрате 625, то погрешность 679–625 = 54. Разделив это число на 50, получим 54/50 = 108/100 = 1,08. Следовательно, улучшенная оценка составит 25 + 1,08 = 26,08. (Для еще более точной оценки: если вы знаете, что 26 в квадрате 676, погрешность будет 3, так что прибавьте 3/52 (приблизительно равно 0,06) и получите 26,06.)

С точностью до сотых ответ будет равен 26,06.

Чтобы приближенно оценить квадратный корень из четырехзначного числа, взгляните на его первые две цифры.

Например, чтобы найти квадратный корень из 7369, оцените квадратный корень из 73. Так как 8 х 8 = 64, а 9 х 9 = 81, то 8 должна быть первой цифрой квадратного корня. Значит, равняемся на «80 плюс…». Теперь приступим к обычному методу решения. Деление 7369 на 80 дает 92 плюс дробь, так что хорошим приближением будет 86[6]. Если возвести в квадрат 86, что равняется 7396, то это число на 27 больше 7369. Теперь делим разность 27 на удвоенное число 86, получаем 27/172, что приближенно равно 0,16. Отсюда следует, что улучшенная оценка 86 — 0,16 = 85,84.

Приближенная оценка квадратного корня из шестизначного числа вроде 593 472 может показаться невозможной для непосвященного. Но вы даже не успеете устать. Так как 7002 = 490 000 и 8002 = 640 000, квадратный корень из 593 472 должен находиться между 700 и 800. На самом деле все пяти- и шестизначные числа имеют трехзначные квадратные корни. На практике вам нужно извлечь квадратный корень только из первых двух цифр шестизначного числа (или из первой цифры пятизначного). Выяснив, что квадратный корень из 59 лежит между 7 и 8, вы определите, что ответ равен «700 плюс…».

Теперь перейдем к привычному способу представления.



Квадратный корень из 593 472 равен 770,37, так что вы довольно близки к правильному решению. Но можно приблизиться еще больше. Как это сделать, покажет следующий прием.

Обратите внимание, что первые две цифры 59 ближе к 64 (8 х 8), чем к 49 (7 х 7). Благодаря этому можно начать оценку с цифры 8 и продолжить, отталкиваясь от нее.



Просто ради забавы сделаем что-нибудь с настоящей громадиной: извлечем квадратный корень из 28 674 529. Это не так трудно, как может показаться. Первый шаг — округление до наибольшего ближайшего числа. В данном случае надо просто найти квадратный корень из 29.



Все семизначные и восьмизначные числа имеют четырехзначные квадратные корни. Таким образом, 5,4 становится 5400 — это оценка. А более точный ответ — 5354,8. Неплохо!

На этом мы завершим главу о приближенных оценках в математике. После выполнения упражнений, представленных в ее конце, переходите к следующей главе о математике с ручкой и бумагой: вы научитесь записывать ответы в задачах быстрее, чем делали это раньше.

* * *

Математическая дуэль Эвариста Галуа

Трагическая история французского математика Эвариста Галуа (1811–1832), убитого в возрасте двадцати лет на дуэли из-за «печально известной кокетки», стала легендарной в истории математики. Не по годам развитый блестящий студент, Галуа заложил основу для раздела математики, известного как теория групп. Легенда гласит, что он изложил на бумаге эту теорию в ночь перед дуэлью, предвидя кончину и желая оставить свое наследие математическому сообществу. За несколько часов до смерти 30 мая 1832 года Галуа написал Огюсту Шевалье: «Я сделал несколько новых открытий в анализе.

Первое касается теории уравнений, остальные — интегральных функций». После этого он попросил друга: «Обратитесь с публичной просьбой к Якоби или Гауссу, чтобы высказали свое мнение не по поводу истинности, а насчет важности этих теорем. Я надеюсь, что кому-нибудь покажется интересным и полезным разобраться в этом беспорядке».

Романтическая легенда и историческая правда, однако, не всегда совпадают. То, что Галуа написал в ночь перед смертью, представляло собой исправления и редакторские правки в документах, принятых Академией наук задолго до этого. Более того, первоначальные документы Галуа были представлены за три года до дуэли, когда ему исполнилось всего семнадцать!

Именно после этого он оказался втянутым в политический конфликт, был арестован, провел какое-то время в темнице и в конечном счете ввязался в ссору из-за женщины и был убит.

Осознавая свою преждевременную зрелость, Галуа отмечал: «Я проводил исследования, которые остановят других ученых». На протяжении более чем ста лет так и происходило.


СОВЕТЫ ПО ПОВОДУ СОВЕТОВ

В главе 0 мы рассказывали, как в большинстве случаев проще вычислить сумму чаевых. Например, чтобы подсчитать 10 % чаевых, надо всего-навсего умножить счет на 0,1 (или поделить его на 10). Например, если счет равен 42 долларам, то 10 % чаевых составят 4,20 доллара. Для вычисления 20 % чаевых надо просто умножить счет на 0,2 или удвоить величину 10 % чаевых. Так, 20 % чаевых по счету в 42 доллара будут равны 8,40 доллара.

Для вычисления 15 % чаевых имеется несколько приемов. Если вы освоили техники из главы 2 и подружились с умножением, то вы просто можете умножить сумму счета на 15 и затем поделить полученный результат на 100. Например, при счете 42 доллара: 42 х 15 = 42 х 5 х 3 = 210 х 3 = 630, что легко делится на 100 и дает чаевые в размере 6,30 доллара. Другой метод: взять среднее от 10 % и 20 % чаевых. В соответствии с нашими ранними вычислениями это выглядит так:



Наверное, самый популярный способ подсчета 15 % чаевых состоит в том, чтобы взять 10 % от общего счета, поделить их на два (что соответствует 5 %), а затем сложить полученные значения. Например, при счете 42 доллара надо сложить 4,20 доллара и половину этой величины, то есть 2,10 доллара:

4,20 + 2,10 = 6,30.

Применим все три метода, чтобы вычислить 15 % от счета в 67 долларов. Прямой метод: 67 х 3 х 5 = 201 х 5 = 1005, что при делении на 100 дает 10,05 доллара. Метод усреднения: усредняем 10 % чаевых в виде 6,70 доллара и 20 % в виде 13,40 доллара и получаем:



Используя последний метод, прибавляем 6,70 доллара к половине данной величины, равной 3,35 доллара, чтобы получить

6,70 + 3,35 = 10,05.

Наконец, для подсчета 25 % чаевых мы предлагаем два метода. Либо умножьте сумму на 25, а затем разделите на 100, либо разделите сумму на 4 (возможно, путем двойного деления числа на два). Например, при счете в 42 доллара можно вычислить 42 х 25 = 42 х 5 х 5 = 210 х 5 = 1050, что при делении на 100 дает чаевые в размере 10,50 доллара. Или можно разделить исходную величину на 4, или сократить ее наполовину дважды: половина 42 долларов — 21 доллар, и еще пополам — 10,50 доллара. При счете в 67 долларов я бы, вероятно, разделил прямо на 4: так как 67 ÷ 4 = 16 3/4, получаем 25 % чаевых в размере 16,75 доллара.


НЕОБРЕМЕНИТЕЛЬНЫЕ ВЫЧИСЛЕНИЯ НАЛОГОВ

В этом разделе я продемонстрирую метод устной оценки величины налога с продаж. Для некоторых налоговых ставок, таких как 5 %, или 6 %, или 10 %, требуются прямые вычисления.

Например, чтобы посчитать налог 6 %, нужно просто умножить цену на 6 и разделить на 100. Допустим, цена составляет 58 долларов, тогда 58 х 6 = 348, что при делении на 100 дает точный размер налога с продаж 3,48 доллара. (При этом общая сумма будет равна 61,48 доллара.)

Но как посчитать налог в 6,5 % от 58 долларов? Я покажу вам несколько способов, как это сделать, а вы выберете тот, который покажется вам наиболее приемлемым. Наверное, самый легкий способ прибавить полпроцента к любой сумме в долларах состоит в ее делении пополам и последующем переводе в центы. В примере с 58 долларами их половина составляет 29. Поэтому просто прибавьте 29 центов к 6 % налога (уже посчитанным 3,48 доллара) и получите налог в размере 3,77 доллара.

Другой метод расчета ответа (или хорошей устной оценки) состоит в следующем: берем налог в 6 %, делим его на 12, затем складываем эти два числа. Например, 6 % от 58 долларов равно 3,48 доллара, а 348 при делении на 12 даст почти 30, поэтому прибавляем 30 центов для получения оценки в 3,78 доллара, что отличается от точного значения всего на один цент. Если вы предпочитаете делить на 10 вместо 12, пробуйте. Вы вычислите 6,6 % вместо 6,5 % (так как 6/10 = 0,6), но это все еще будет хорошей оценкой. Здесь вы возьмете 3,48 доллара и прибавите 34 цента для получения 3,82 доллара.

Попробуем другие процентные ставки налога с продаж.

Как посчитать 7,25 % от 124 долларов? Вначале вычислите 7 % от 124. С помощью методов, показанных в главе 2, вы найдете, что 124 х 7 = 868. Значит, 7 % от 124 будет 8,68 доллара. Чтобы прибавить четверть процента, можно разделить исходную сумму в долларах на 4 (или сократить ее наполовину дважды) и перевести доллары в центы. Здесь 124 ÷ 4 = 31, поэтому прибавьте 31 цент к 8,68 доллара и получите точный размер налога — 8,99 доллара.

Еще один способ прийти к 31 центу: возьмите налог с продаж 7 % (8,68 доллара) и разделите его на 28. Причина, по которой это работает, заключается в том, что 7/28 = 1/4. Для быстрой устной оценки я бы, вероятно, разделил 8,68 доллара на 30, чтобы получить около 29 центов. Тогда приблизительный налог с продаж будет равен 8,97 доллара.

Деля на 30, в действительности вы вычисляете налог в размере 7 и 7/30 %, что приблизительно составляет 7,23 % вместо 7,25 %.

Как бы вы посчитали налог с продаж в размере 7,75 %? Вероятно, для большинства приближений достаточно сказать, что это немного меньше 8 %. Здесь вы найдете несколько предложений для получения лучших приближений. Как вы убедились в прошлом примере, если вы с легкостью можете вычислить корректировку в 0,25 %, то, просто утроив это число, можно получить корректировку в 0,75 %. Например, чтобы найти 7,75 % от 124 долларов, вы сначала рассчитываете 7 %, что составит 8,68 доллара. Если вы вычислите, что 0,25 % = 31 цент, то 0,75 % будет равно 93 центам; для получения общего итога сложим 8,68 + 0,93 = 9,61 доллара. Для быстрой оценки можно использовать тот факт, что 7/9 = 0,777 приблизительно равно 0,75. Поэтому можно разделить 7 % налога на 9, чтобы получить оценку, несколько превышающую 0,75 %. В данном примере, если при делении 8,68 доллара на 9 получим около 96 центов, то просто складываем 8,68 + 0,96 = 9,64 доллара, что почти совпадает с точным значением, хоть и с незначительным превышением.