Магия чисел — страница 16 из 29

Такую процедуру приближения можно использовать для любых налогов с продаж. Вот общая формула: чтобы оценить налог с продаж в размере A,B% долларов, сначала умножьте цену на A%. Затем разделите эту величину на число D, где A/D равняется 0,B. (Таким образом, D = А/В.) Сумма этих чисел составит общий размер налога. (Или его оценку, если вы округлили D до некоторого числа для упрощения вычислений.)

Например, с налогом 7,75 % магический делитель D равен 7 х 4/3 = 28/3 = 9 1/3, что мы округлим до 9 в меньшую сторону.

Для налога с продаж в размере 6 и 3/8 % сначала посчитайте налог в размере 6 %, затем разделите полученное число на 16, так как 6/16 = 3/8. (Чтобы разделить число на 16, разделите его дважды на 4, или сначала на 8, а затем на 2.) Попробуйте придумать метод для расчета налога с продаж в вашем регионе. Вы поймете, что эта задача не столь сложна, как кажется!


НЕСКОЛЬКО ИНТЕРЕСНЫХ ВЫЧИСЛЕНИЙ

В этом разделе мы вкратце рассмотрим несколько практических задач, связанных с процентами, временем увеличения суммы ваших сбережений и сроками погашения кредита.

Начнем со знаменитого Правила 70, которое гласит: чтобы найти число лет, необходимых для удвоения ваших денег, разделите число 70 на годовую процентную ставку. Предположим, вам предложили инвестиционную возможность, которая сулит выплаты в размере 5 % годовых. Так как 70 ÷ 5 = 14, потребуется около 14 лет, чтобы ваши деньги удвоились. Например, если вы разместили 1000 долларов на депозите под такую процентную ставку, то после 14 лет на нем будет 1000 х (1,05)14 = 1979,93 доллара. С процентной ставкой 7 %, согласно правилу 70, вам понадобится около 10 лет для удвоения денег. В самом деле, если вы вложите 1000 долларов по этой годовой процентной ставке, то через 10 лет получите 1000 х (1,07)10 = 1967,15 доллара. Что касается ставки в 2 %, то для удвоения сбережений в данном случае понадобится около 35 лет!

1000 х (1,02)35 = 1999,88

Еще одно похожее правило называется Правило 110; оно определяет, как долго ваши деньги будут утраиваться. Например, при ставке в 5 %, так как 110 ÷ 5 = 22, потребуется около 22 лет для того, чтобы 1000 долларов превратилась в 3000 долларов. Это подтверждается вычислением 1000 х (1,05)22 = 2 925,26 доллара. Правило 70 и Правило 110 основаны на свойствах числа e = 2,71828… и «натуральных логарифмах», но, к счастью, нам нет нужды использовать высшую математику, чтобы применять их.

Предположим, вы заняли деньги и рано или поздно должны их вернуть. Например, вы взяли кредит 360 000 долларов с годовой ставкой 6 % (то есть 0,5 % ставки каждый месяц) на 30 лет. Сколько примерно придется выплачивать ежемесячно? Прежде всего, каждый месяц вам понадобится 1800 долларов (360 000 долларов умножить на 0,5 % = 1800 долларов)

только для того, чтобы покрыть проценты. (Хотя на самом деле ваши долги по процентам будут распределяться равномерно.) Так как вы совершите 30 х 12 = 360 месячных выплат, то выплата дополнительной тысячи долларов каждый месяц покроет остаток вашего займа. Итак, верхняя граница ежемесячных выплат будет равна 1800 долларов + 1000 долларов = 2800 долларов. К счастью, вам не придется платить столько сверху. Вот мое правило большого пальца для оценки месячных платежей.

Обозначим буквой i вашу месячную процентную ставку.

(Годовая ставка, деленная на 12.) Тогда для выплаты кредита в размере P долларов за N месяцев месячная выплата М будет приблизительно равна:



В нашем последнем примере P = 360 000 долларов и i = 0,005. Формула показывает, что месячная выплата должна составлять:



Обратите внимание, что первые два числа в числителе при умножении дают 1800 долларов. С помощью калькулятора (для разнообразия) подсчитаем (1,005)360 = 6,02, тогда месячная выплата должна равняться 1800 х (6,02)/5,02, что примерно составляет 2160 долларов в месяц.

Еще один пример. Предположим, вы взяли машину в кредит и после первоначального взноса должны выплатить 18 000 долларов за 5 лет с годовой ставкой 4 %. Без процентов вы должны были бы платить 300 долларов (18 000 ÷ 60) в месяц. Так как ставка процента за первый месяц будет составлять 18 000 х 0,04/12 = 720/12 = 60 долларов, отсюда следует, что платить в месяц нужно не больше 300 + 60 = 360 долларов.

Здесь месячный процент i = 0,04/12 = 0,00333. Применим нашу формулу и получим:



Так как (1,00333)60 = 1,22, размер месячной выплаты составит 60 х 1,22/0,22 = 333 доллара.

Подведем итоги этой главы упражнениями, которые, надеюсь, поддержат ваш интерес к представленным здесь темам.


УПРАЖНЕНИЯ НА ПРИБЛИЖЕННУЮ ОЦЕНКУ

Решите следующие упражнения на вычисление приближенной оценки; затем сверьте свои ответы и ход вычислений с ответами в конце книги.


УПРАЖНЕНИЕ: ПРИБЛИЖЕННАЯ ОЦЕНКА ПРИ СЛОЖЕНИИ

Округлите эти числа в ту или иную сторону и посмотрите, насколько вы близки к точному ответу.



Устно оцените сумму для следующего столбика чисел, округляя их до ближайших 50 центов.

2,67

1,95

7,25

9,21

0,49

11,21

0,12

6,14

8,31


УПРАЖНЕНИЕ: ПРИБЛИЖЕННАЯ ОЦЕНКА ПРИ ВЫЧИТАНИИ

Оцените ответы следующих задач на вычитание, используя округление до второй или третьей цифры.



УПРАЖНЕНИЕ: ПРИБЛИЖЕННАЯ ОЦЕНКА ПРИ ДЕЛЕНИИ

Скорректируйте числа таким образом, чтобы у вас появилась возможность дать приближенную оценку результатам деления.



УПРАЖНЕНИЕ: ПРИБЛИЖЕННАЯ ОЦЕНКА ПРИ УМНОЖЕНИИ

Скорректируйте числа таким образом, чтобы у вас появилась возможность дать приближенную оценку результатам умножения.



УПРАЖНЕНИЕ: ПРИБЛИЖЕННАЯ ОЦЕНКА КВАДРАТНЫХ КОРНЕЙ

Оцените квадратные корни следующих чисел, используя методы деления и усреднения.



УПРАЖНЕНИЕ: КАЖДОДНЕВНАЯ МАТЕМАТИКА

1. Вычислите 15 % от 88 долларов.

2. Вычислите 15 % от 53 долларов.

3. Вычислите 25 % от 74 долларов.

4. Сколько времени потребуется для удвоения денег при годовой ставке в 10 %?

5. Сколько времени потребуется для удвоения суммы при годовой ставке в 6 %?

6. Сколько времени понадобится для утроения суммы при годовой ставке в 7 %?

7. Сколько времени потребуется для увеличения средств в 4 раза при годовой ставке в 7 %?

8. Оцените размер месячной выплаты за кредит в 100 000 долларов при процентной ставке 9 % в течение 10 лет?

9. Оцените размер месячной выплаты за кредит в 30 000 долларов при процентной ставке 5 % в течение 4 лет?

Глава 6Математика с ручкой и бумагой

Во введении я упоминал о выгодах, которые вы получите от умения считать в уме. В этой главе я расскажу о том, как ускорить вычисления на бумаге. С тех пор как появились калькуляторы, они успели взять на себя бóльшую часть выполнения арифметических действий во многих ситуациях.

Поэтому в этой главе я предпочел сосредоточиться на забытом искусстве вычисления квадратных корней и методе «крест-накрест» для перемножения больших чисел. Надо сказать, что в основном для разминки мозга, а не для практического применения, я сначала затрону сложение и вычитание и покажу вам парочку любопытных приемов для ускорения этого процесса. Вообще-то эти техники можно успешно использовать в повседневной жизни, в чем вы вскоре убедитесь.

Если вы готовы встретиться с более трудными задачками на умножение, можете пропустить эту главу и сразу перейти к главе 7, критически важной для освоения навыков работы с большими задачами из главы 8. Если же вам нужен перерыв и вы просто хотите немного развлечься, рекомендую прочитать эту главу — вы получите удовольствие от того, что вновь обратились к ручке и бумаге.


СТОЛБИКИ ЧИСЕЛ

Сложение длинных столбиков чисел — как раз та самая задача, с которой вы можете столкнуться по работе или во время подсчета собственных доходов и расходов. Суммируйте числа из следующего столбика привычным способом, а затем посмотрите, как это сделал я.



Когда у меня есть ручка и бумага, я складываю числа сверху вниз и справа налево, как учили в школе. Практикуясь, вы сможете решать эти задачи в уме так же быстро (или быстрее), как и на калькуляторе. Когда я суммирую цифры, единственные числа, которые я «слышу», — это частичные суммы.

Я всегда сначала суммирую крайнюю справа колонку: 8 + 4 + 0 + 7 + 7 + 5 и слышу: 8… 12… 19… 26… 31. Затем я записываю 1, держа в уме 3. Следующая колонка звучит так: 3… 5… 13… 15… 22… 23… 25. Получив итоговый ответ, я записываю его, а затем проверяю свои вычисления путем сложения чисел снизу вверх и обычно получаю такой же результат.

Например, суммирую цифры первой колонки снизу вверх: 5 + 7 + 7 + 0 + 4 + 8 (у меня в голове при этом звучит 5… 12… 19… 23… 31), затем мысленно переношу цифру 3 и складываю 3 + 2 + 1 + 7 + 2 + 8 + 2 и т. д. Благодаря сложению чисел в другом порядке вы снижаете вероятность совершить одинаковую ошибку дважды. Конечно, если ответы отличаются, то хотя бы одно из вычислений было неправильным.


МОДУЛЬНЫЕ СУММЫ

Когда я не уверен в ответе, я проверяю решение, используя метод, который называю «модульные суммы» (потому что он основан на элегантной математике из раздела модульной арифметики[7]). Он также известен под названиями «цифровые корни» и «метод сравнений по модулю 9». Признаю, что этот метод не слишком практичен, зато он легок в применении.