Обратите внимание на последовательность действий. Путем разложения 288 на 9 х 8 х 4 мы упрощаем задачу «3 на 3» (829 х 288) до «3 на 1 на 1 на 1». Далее она превращается в «4 на 1 на 1» (7461 х 8 х 4) и, наконец, в «5 на 1» для получения итогового ответа 238 752. Прелесть данного решения состоит в отсутствии каких-либо действий на сложение и в том, что ничего не нужно хранить в уме. Добравшись до задачи типа «5 на 1», мы оказались в одном шаге от окончательного ответа.
Задачу типа «5 на 1» можно решить в два действия, если представить 59 688 как 59 000 + 688, а затем сложить результаты задач «2 на 1» (59 000 х 4) и «3 на 1» (688 х 4), как показано ниже.
Если оба трехзначных числа можно разложить на «2 на 1», то задача «3 на 3» упрощается до «2 на 2 на 1 на 1», как в следующем примере.
Как обычно, лучше сразу избавиться от трудного элемента задачи, то есть от умножения типа «2 на 2». Как только вы это сделаете, задача будет сведена к «4 на 1», а затем к «5 на 1».
Очень часто бывает так, что раскладывается только один из сомножителей. В таком случае задача сводится к умножению типа «3 на 2 на 1», как в этом примере:
Следующая задача «3 на 3» в действительности просто замаскированная задача типа «3 на 2».
Путем удвоения 435 и уменьшения 624 наполовину получаем эквивалентную задачу.
Метод совместной близости
Вы готовы к чему-нибудь попроще? Следующий прием, который был представлен еще в главе 0, основан на такой алгебраической формуле:
(z + a)(z + b) = z
2 + za + zb + ab
Переписываем ее:
(z + a)(z + b) = z(z + a + b) + ab
Эта формула справедлива при любых значениях z,aи b.
Мы будем пользоваться ею всякий раз, когда трехзначные числа, которые нужно перемножить (z х a и z х b), находятся близко к легкому числу z (типичный случай, когда число z имеет большое количество нулей). Например, умножим
Будем рассматривать эту задачу как (100 + 7) х (100 + 11).
Задав z = 100, a = 7, b = 11, наша формула даст:
100 (100 + 7 + 11) + 7 х 11 = 100 х 118 + 77 = 11 877.
Я схематически изобразил решение так:
Числа в скобках равны разностям между исходными числами и нашим подходящим «базовым числом» (здесь z = 100).
Число 118 получено путем сложения 107 + 11 или 111 + 7. По законам алгебры, эти суммы эквивалентны, так как (z + a) + b = (z + b) + a.
На этот раз без лишних слов решим еще один «ускоренный» пример:
Метод работает великолепно!
Теперь немного повысим ставки и возьмем большее базовое число.
Хотя данный метод, как правило, используется для умножения трехзначных чисел, его также можно применить для задач типа «2 на 2».
Здесь базовое число 70 умножается на 81 (78 + 3). В таких задачах даже действие на сложение обычно очень простое.
Этот метод также применим, когда оба числа меньше базового. Как, например, в следующей задаче, где оба числа меньше 400.
Число 383 получено путем вычитания 396 — 13 или 387 — 4.
Данный метод также можно использовать и для задач типа «2 на 2», таких как следующие.
В следующем примере базовое число по величине находится между перемножаемыми числами.
Число 409 получено в ходе операций 396 + 13 или 413 — 4.
Обратите внимание, что, поскольку числа –4 и 13 имеют противоположные знаки, из результата умножения необходимо вычесть 52.
Поднимем ставки еще выше, до уровня, где второе действие требует умножения типа «2 на 2».
Здесь обратите внимание на то, что первое действие в задаче (600 х 658) является хорошей оценкой ответа. Но наш метод позволяет перейти от оценки к точному ответу.
Обратите также внимание, что во всех примерах сумма чисел, которые мы перемножаем в первом действии, такая же, как и исходные числа. Например, в задаче выше 900 + 829 = 1729, как и 876 + 853 = 1729. Это следует из равенства:
z + [(z + a) + b] = (z + a) + (z + b)
Поэтому, чтобы получить число, которое надо умножить на 900 (оно будет в диапазоне «800 плюс»), нужно всего лишь взглянуть на последние две цифры суммы 76 + 53 = 129, чтобы вышло 829.
В следующем примере сложение 827 + 761 = 1588 подсказывает, что нужно перемножить 800 х 788, а затем из полученного результата вычесть произведение 27 х 39.
Этот метод настолько эффективен, что если задача типа «3 на 3», над которой вы думаете в настоящий момент, состоит из чисел, далеких друг от друга, то иногда можно видоизменить ее путем деления одного и умножения другого числа на одинаковое число (тем самым сблизив сомножители по величине). Например, задачу 672 х 157 можно решить следующим образом.
Когда перемножаемые числа одинаковы, метод совместной близости генерирует такие же вычисления, как и в традиционном методе возведения в квадрат.
Метод сложения
Когда ни один из предыдущих методов не работает, я ищу возможность использовать метод сложения, в особенности если первые две цифры одного из трехзначных чисел просты в разложении. Например, в нижеприведенном примере 64 (первые две цифры числа 641) раскладывается как 8 х 8, поэтому я его решаю следующим образом.
По тому же принципу в примере ниже 42 из числа 427 раскладывается как 6 х 7, поэтому можно использовать метод сложения, представив 427 в виде 420 + 7.
Часто я разбиваю последнюю задачу на сложение на два этапа, как показано ниже.
Поскольку задачи, решаемые методом сложения, требуют определенных усилий, обычно я ищу другой способ, который приведет к простым вычислениям в конце процесса решения.
Например, задачу, показанную выше, можно решить с помощью разложения. Вот какие действия я бы выполнил:
В самых простых задачах, решаемых методом сложения, одно из чисел содержит 0 в середине числа, как показано ниже.
Такие задачи, как правило, самые легкие из тех, которые можно решить аналогичным способом. Поэтому стоит приглядеться к задаче типа «3 на 3», чтобы определить возможность ее преобразования в задачу с нулями. Это окупается.
Например, в задачу 732 х 308 можно преобразовать следующие «безнулевые» примеры.
Мы уже упоминали, что другой способ решения данной задачи сводится к выполнению операций 308 х 366 х 2 и использованию преимущества близости чисел 308 и 366.
Щелкаем еще один «крепкий орешек»:
Метод вычитания
Метод вычитания — это орудие, которое я время от времени применяю, когда одно из трехзначных чисел можно округлить до простого трехзначного числа с нулем на конце, как в следующем примере:
Подобным образом решаем такую задачу:
Метод «когда все остальное не работает»
Когда все остальное не срабатывает, я применяю один очень надежный метод. При его использовании задача на умножение типа «3 на 3» разбивается на 3 части: задача типа «3 на 1», типа «2 на 1» и типа «2 на 2». По мере решения этих задач их ответы суммируются. Такие задачи всегда сложные, особенно если нельзя видеть исходные числа. Во время выступлений с задачами на умножение типа «3 на 3» и «5 на 5» у меня всегда под рукой записанные условия, но все расчеты я произвожу в уме.
Вот пример:
На практике вычисления выполняются так, как показано ниже. Иногда я использую фонетический код для хранения в памяти тысяч (здесь 447 = our rug) и сотен (здесь 1) — на пальцах.
Решим еще один пример, но на этот раз я разобью на части первое число. (Обычно я так поступаю с бóльшим из чисел, так решить задачу на сложение становится легче.)
Эти задачи встроены в примеры «5 на 5», которые находятся в следующем разделе.
Самая большая задача, которую мы попытаемся решить в уме, состоит из двух пятизначных чисел. Для выполнения умножения типа «5 на 5» вам необходимо в совершенстве овладеть навыком решения задач типа «2 на 2», «2 на 3» и «3 на 3» (а также уметь применять фонетический код). Решение задачи «5 на 5» — это просто вопрос сведения воедино всех типов задач, освоенных вами ранее. Как и при возведении в квадрат пятизначных чисел, вы будете использовать распределительный закон для разделения чисел на составные части. Например:
Основываясь на этом разделении, данную задачу можно разложить на четыре более простые задачи на умножение в стиле «крест-накрест», что я покажу ниже, как задачу типа «2 на 2», две задачи типа «3 на 2» и одну типа «3 на 3».
Далее суммируются решения всех этих задач. Вот как это выглядит:
Как и при возведении пятизначных чисел в квадрат, я начинаю с середины, берясь за задачу «3 на 2» (как самую трудную):
Запомнив число 33 228 с помощью мнемоники Mom, no knife, далее переключаюсь на вторую задачу типа «3 на 2».
2. 27 х 196 = 27 х (200 — 4) = 5400 — 108 = 5292.
И прибавляю этот результат к числу, которое хранится в памяти.
Получаем новую сумму и сохраняем ее в уме как:
Movie lines (38 миллионов, 520 тысяч)
Запомнив этот мнемонический код, решаем задачу «2 на 2».
4. 52 х 27 = 52 х 9 х 3 = 1 404.
На данном этапе уже можно дать частичный ответ. Поскольку задача «2 на 2» — это перемножение миллионов, то 1 404 означает 1 миллиард 404 миллиона. Так как 404 миллиона не подразумевают переноса единицы в разряд миллиардов, то можно спокойно произнести: «Один миллиард…».
5. 404 + Movie (38) = 442.
Теперь прибавляем 404 к movie (38), получается 442. В этот момент можно сказать «…442 миллиона…». Это можно сделать потому, что на 442 не будет переноса единицы. Чтобы удостовериться в этом, надо посмотреть наперед на задачу типа «3 на 3». Если ее ответ говорит о переносе единицы, то надо сказать «443 миллиона». Но так как результат задачи «3 на 3» (639 х 196) не превысит 500 000 (что показывает грубая оценка 600 х 200 = 120 000), этого не произойдет.