Доказательство методом индукции
Вернемся к теоремам о положительных числах. В главе 1 мы выяснили, что
и предположили, что сумма первых n нечетных чисел равна n². Позже мы это подтвердили, причем очень красиво и остроумно – с помощью комбинаторного доказательства, подсчитав двумя разными способами количество клеток на шахматной доске. А почему бы нам не попробовать другой метод – пусть и не такой эффектный, но при этом ничуть не менее эффективный. Предположим, я сказал вам (или вы просто верите в то), что первые 10 нечетных чисел 1 + 3 +… + 19 дают в сумме 10² = 100. Если вы с этим согласны, значит, прибавление следующего нечетного числа – 21 – даст нам уже 121, что равно 11². Другими словами, если мое утверждение правдиво для десяти чисел, оно будет правдивым и для одиннадцатого. В этом и состоит суть математического доказательства по индукции: сначала мы доказываем, что некое утверждение относительно числа n является изначально верным (обычно при n = 1), а затем показываем, что, если это верно для n = k, оно останется автоматически верным для n = k + 1 и так далее – для любого значения n. Доказательство по индукции подобно подъему по лестнице: поднявшись на первую ступеньку, вы имеете все основания и все возможности подняться и на вторую. Ну а старая добрая логика настойчиво подсказывает, что так вы рано или поздно сможете оказаться и на пятой, и на десятой, и на n-ной ступени.
Так, в примере с первыми n нечетными числами наша задача – показать, что при любом значении n ≥ 1
Мы видим, что сумма самого первого нечетного числа – 1 – и в самом деле составляет 1², то есть для n = 1 наше предположение абсолютно верно. Дальше нам следует обратить внимание на то, что, если сумма первых k нечетных чисел составляет k², а именно
при добавлении следующего нечетного числа (2k + 1) у нас получится
Другими словами, если сумма первых k нечетных чисел равна k², то сумма первых k + 1 нечетных чисел обязательно будет равна (k + 1)². Значит, теорема, истинная в отношении n = 1, будет столь же истинной в отношении любого значения n.◻
Индукция – инструмент действенный. Эта книга начиналась с проблемы определения суммы первых n чисел. Разными путями мы пришли к тому, что
Это предположение, безусловно, правдиво при n = 1 (потому что 1 = 1(2)/2). Предположим, что оно правдиво и для числа k:
Тогда, прибавив к этой сумме (k + 1), получим
В этой формуле k + 1 использовано вместо n. Значит, если она верна для n = k (где под k может скрываться любое положительное число), она будет так же верна и для n = k + 1. Равно как и для любого положительного значения n.◻
В этой главе (да и в книге вообще) будет еще много примеров использования индуктивного метода. А пока для закрепления материала вот вам песня, написанная «музыкантами от математики» Дэйном Кэмпом и Ларри Лессером на мотив знаменитой «Blowin' in the Wind» Боба Дилана.
Откуда нам знать, что теорема верна
С любым значением n?
Миллиард вариантов – все не перебрать,
Никак не свести в один.
Но как же иначе найти нам ответ,
Чтоб не свалиться в сплин?
Индукция, друг мой, – вот наш господин.
Индукция – наш господин.
Сначала находим, с чего бы начать,
К чему наш закон примени́м,
Потом переносим все это на k,
Потом – и на k + 1.
Ну а дальше легко – ведь эффект домино
Нисколечко не отмени́м.
Индукция, друг мой, – вот наш господин.
Индукция – наш господин!
n раз повторю, да хоть n + 1:
Индукция – наш господин!
В главе 5 мы рассмотрели несколько задач, основанных на числах последовательности Фибоначчи. Попробуем доказать парочку из них, используя метод индукции.
Теорема: Для n ≥ 1
Доказательство (методом индукции): Если n = 1, то F1 = F3 – 1, что соответствует 1 = 2 – 1, что безусловно истинно. Применим это к n = k, то есть
Добавив к обеим частям число Фибоначчи Fk+1, получим
что и требовалось доказать.
Столь же простым будет доказательство для суммы квадратов чисел Фибоначчи.
Теорема: Для n ≥ 1
Доказательство (методом индукции): Если n = 1, то F1² = F1F2, что верно потому, что F2 = F1 = 1. Применив это к n = k, получаем
А теперь добавим к обеим сторонам F²k+1:
что и требовалось доказать.
В главе 1 мы выяснили, что сумма кубов равна квадрату суммы, то есть
но тогда мы не были готовы это доказать. Просто мы ничего не знали об индукции. При n ≥ 1 общая закономерность выглядит так:
А так как нам уже известно, что докажем схожую теорему.
Теорема: Для n ≥ 1
Доказательство (методом индукции): При n = 1 предположим, что 1³ = 1²(2²)/4, что истинно. Следовательно, если схожее предположение будет истинным и при n = k, теорема будет доказана:
Прибавим к обеим сторонам (k + 1)³ и получим
что и требовалось доказать.
А вот геометрическое доказательство тождества суммы кубов.
Посчитаем площадь фигуры двумя разными способами, а потом сравним результаты. С одной стороны, перед нами явно квадрат, каждая из сторон которого равна 1 + 2 + 3 + 4 + 5, а общая площадь, таким образом, – (1 + 2 + 3 + 4 + 5)².
С другой стороны, если начать с верхнего левого угла, а затем двигаться вниз по диагонали, мы пройдем последовательно через один квадрат размером 1 на 1, два размером 2 на 2 (один из которых разбит на два прямоугольника), три квадрата размером 3 на 3, четыре размером 4 на 4 (и еще один «разрезанный» пополам) и, наконец, пять квадратов размером 5 на 5. Следовательно, их общая площадь будет равна
Так как обе полученные нами площади должны быть равны, имеем
То же можно сделать и с квадратом со сторонами длиной 1 + 2 +… + n, чтобы прийти к
Доказательство методом индукции применяется не только при сложении – оно отлично работает всякий раз, когда некую «большую» проблему (вроде k + 1) можно решить посредством «маленькой» (вроде k). Приведу вам свою любимую теорему, вроде той, что мы доказывали в начале главы, когда решали проблему с заполнением шахматной доски костяшками домино. Однако на этот раз поговорим не о невозможности, а наоборот, о возможности, причем возможности постоянной, а вместо домино используем тримино[16] L-образной формы.
Так как 64 (число клеток) на 3 не делится, одних лишь тримино для всей площади шахматной доски нам явно не хватит. Но стоит взять дополнительно один квадратик размером 1 на 1, и можно смело утверждать, что вне зависимости от его (квадратика) положения на доске для всего остального хватит тримино. Причем утверждение это справедливо не только для обычных шахматных досок 8 на 8, но и для досок размером 2 на 2, 4 на 4, 16 на 16 и т. д.