Магия математики. Как найти x и зачем это нужно — страница 22 из 51

v= 0,123456789101112131415…

Доказательство методом индукции

Вернемся к теоремам о положительных числах. В главе 1 мы выяснили, что



и предположили, что сумма первых n нечетных чисел равна n². Позже мы это подтвердили, причем очень красиво и остроумно – с помощью комбинаторного доказательства, подсчитав двумя разными способами количество клеток на шахматной доске. А почему бы нам не попробовать другой метод – пусть и не такой эффектный, но при этом ничуть не менее эффективный. Предположим, я сказал вам (или вы просто верите в то), что первые 10 нечетных чисел 1 + 3 +… + 19 дают в сумме 10² = 100. Если вы с этим согласны, значит, прибавление следующего нечетного числа – 21 – даст нам уже 121, что равно 11². Другими словами, если мое утверждение правдиво для десяти чисел, оно будет правдивым и для одиннадцатого. В этом и состоит суть математического доказательства по индукции: сначала мы доказываем, что некое утверждение относительно числа n является изначально верным (обычно при n = 1), а затем показываем, что, если это верно для n = k, оно останется автоматически верным для n = k + 1 и так далее – для любого значения n. Доказательство по индукции подобно подъему по лестнице: поднявшись на первую ступеньку, вы имеете все основания и все возможности подняться и на вторую. Ну а старая добрая логика настойчиво подсказывает, что так вы рано или поздно сможете оказаться и на пятой, и на десятой, и на n-ной ступени.

Так, в примере с первыми n нечетными числами наша задача – показать, что при любом значении n ≥ 1

1 + 3 + 5 +… + (2n– 1) =n²

Мы видим, что сумма самого первого нечетного числа – 1 – и в самом деле составляет 1², то есть для n = 1 наше предположение абсолютно верно. Дальше нам следует обратить внимание на то, что, если сумма первых k нечетных чисел составляет k², а именно

1 + 3 + 5 +… + (2k– 1) =k²

при добавлении следующего нечетного числа (2k + 1) у нас получится

1 + 3 + 5 +… + (2k– 1) + (2k+ 1) =k² + (2k+ 1) = (k+ 1)²

Другими словами, если сумма первых k нечетных чисел равна k², то сумма первых k + 1 нечетных чисел обязательно будет равна (k + 1)². Значит, теорема, истинная в отношении n = 1, будет столь же истинной в отношении любого значения n.◻

Индукция – инструмент действенный. Эта книга начиналась с проблемы определения суммы первых n чисел. Разными путями мы пришли к тому, что



Это предположение, безусловно, правдиво при n = 1 (потому что 1 = 1(2)/2). Предположим, что оно правдиво и для числа k:



Тогда, прибавив к этой сумме (k + 1), получим



В этой формуле k + 1 использовано вместо n. Значит, если она верна для n = k (где под k может скрываться любое положительное число), она будет так же верна и для n = k + 1. Равно как и для любого положительного значения n.◻

В этой главе (да и в книге вообще) будет еще много примеров использования индуктивного метода. А пока для закрепления материала вот вам песня, написанная «музыкантами от математики» Дэйном Кэмпом и Ларри Лессером на мотив знаменитой «Blowin' in the Wind» Боба Дилана.

Откуда нам знать, что теорема верна

С любым значением n?

Миллиард вариантов – все не перебрать,

Никак не свести в один.

Но как же иначе найти нам ответ,

Чтоб не свалиться в сплин?

Индукция, друг мой, – вот наш господин.

Индукция – наш господин.

Сначала находим, с чего бы начать,

К чему наш закон примени́м,

Потом переносим все это на k,

Потом – и на k + 1.

Ну а дальше легко – ведь эффект домино

Нисколечко не отмени́м.

Индукция, друг мой, – вот наш господин.

Индукция – наш господин!

n раз повторю, да хоть n + 1:

Индукция – наш господин!

Отступление

В главе 5 мы рассмотрели несколько задач, основанных на числах последовательности Фибоначчи. Попробуем доказать парочку из них, используя метод индукции.

Теорема: Для n ≥ 1

F1 +F2 +… +Fn=Fn+2 – 1

Доказательство (методом индукции): Если n = 1, то F1 = F3 – 1, что соответствует 1 = 2 – 1, что безусловно истинно. Применим это к n = k, то есть

F1 +F2 +… +Fk=Fk+2 – 1

Добавив к обеим частям число Фибоначчи Fk+1, получим

F1 +F2 +… +Fk+Fk+1 =Fk+1 +Fk+2 – 1 =Fk+3 – 1

что и требовалось доказать.

Столь же простым будет доказательство для суммы квадратов чисел Фибоначчи.

Теорема: Для n ≥ 1

F1² +F2² +… +Fn² =FnFn+1

Доказательство (методом индукции): Если n = 1, то F1² = F1F2, что верно потому, что F2 = F1 = 1. Применив это к n = k, получаем

F1² +F2² +… +Fk² =FkFk+1

А теперь добавим к обеим сторонам F²k+1:

F1² +F2² +… +Fk² +F²k+1 =FkFk+1+F²k+1 =Fk+1(Fk + Fk+1) =Fk+1+Fk+2

что и требовалось доказать.

В главе 1 мы выяснили, что сумма кубов равна квадрату суммы, то есть



но тогда мы не были готовы это доказать. Просто мы ничего не знали об индукции. При n ≥ 1 общая закономерность выглядит так:

1³ + 2³ + 3³ +… +n³ = (1 + 2 + 3 +… +n

А так как нам уже известно, что докажем схожую теорему.

Теорема: Для n ≥ 1



Доказательство (методом индукции): При n = 1 предположим, что 1³ = 1²(2²)/4, что истинно. Следовательно, если схожее предположение будет истинным и при n = k, теорема будет доказана:



Прибавим к обеим сторонам (k + 1)³ и получим



что и требовалось доказать.

Отступление

А вот геометрическое доказательство тождества суммы кубов.

Посчитаем площадь фигуры двумя разными способами, а потом сравним результаты. С одной стороны, перед нами явно квадрат, каждая из сторон которого равна 1 + 2 + 3 + 4 + 5, а общая площадь, таким образом, – (1 + 2 + 3 + 4 + 5)².

С другой стороны, если начать с верхнего левого угла, а затем двигаться вниз по диагонали, мы пройдем последовательно через один квадрат размером 1 на 1, два размером 2 на 2 (один из которых разбит на два прямоугольника), три квадрата размером 3 на 3, четыре размером 4 на 4 (и еще один «разрезанный» пополам) и, наконец, пять квадратов размером 5 на 5. Следовательно, их общая площадь будет равна

(1 × 1²) + (2 × 2²) + (3 × 3²) + (4 × 4²) + (5 × 5²) = 1³ + 2³ + 3³ + 4³ + 5³

Так как обе полученные нами площади должны быть равны, имеем

1³ + 2³ + 3³ + 4³ + 5³ = (1 + 2 + 3 + 4 + 5)²

То же можно сделать и с квадратом со сторонами длиной 1 + 2 +… + n, чтобы прийти к

1³ + 2³ + 3³ +… + n³ = (1 + 2 + 3 +… +n)²☺

Доказательство методом индукции применяется не только при сложении – оно отлично работает всякий раз, когда некую «большую» проблему (вроде k + 1) можно решить посредством «маленькой» (вроде k). Приведу вам свою любимую теорему, вроде той, что мы доказывали в начале главы, когда решали проблему с заполнением шахматной доски костяшками домино. Однако на этот раз поговорим не о невозможности, а наоборот, о возможности, причем возможности постоянной, а вместо домино используем тримино[16] L-образной формы.

Так как 64 (число клеток) на 3 не делится, одних лишь тримино для всей площади шахматной доски нам явно не хватит. Но стоит взять дополнительно один квадратик размером 1 на 1, и можно смело утверждать, что вне зависимости от его (квадратика) положения на доске для всего остального хватит тримино. Причем утверждение это справедливо не только для обычных шахматных досок 8 на 8, но и для досок размером 2 на 2, 4 на 4, 16 на 16 и т. д.