A и С).
Образовавшиеся при этом углы d и e вместе с углом b образуют линию, поэтому d + b + e = 180°. Обратите внимание, что углы a и d и углы c и e при этом являются внутренними накрест лежащими, следовательно, d = a, а e = c, что приводит нас к a + b + c = 180°, что и требовалось доказать.
Теорема о сумме углов треугольника, равной 180°, крайне важна для понимания сути планиметрии. В других же геометрических системах она не работает совершенно: для примера можно спроецировать тот же треугольник на сферу-«глобус», причем так, чтобы он начинался на «северном полюсе», спускался к «экватору» вдоль любой из «линий долготы», там заворачивал направо в первый раз, а после прохождения четверти «планеты» – и во второй, возвращаясь к «северному полюсу». Получившийся таким образом треугольник будет иметь три прямых угла, дающих вместе не 180, а целых 270°. В сферической геометрии сумма углов треугольника есть величина непостоянная: она все больше отдаляется от значения в 180° при малейшем увеличении его площади и находится к ней в прямой пропорциональной зависимости.
На занятиях по геометрии в школе или университете очень много внимания уделяется доказательству конгруэнтности объектов: это значит, что, перемещая, вращая или отображая зеркально одну фигуру, мы можем получить совпадающую с ней другую. Например, изображенные на рисунке треугольники ABC и DEF являются конгруэнтными, поскольку при смещении влево треугольник DEF полностью совпадет с треугольником ABC. На рисунке это показано с помощью специальных меток: если соответствующие стороны или углы двух фигур маркированы одинаковым количеством черточек, они равны.
Для этого даже есть специальный математический символ – ≅; наша запись, таким образом, будет выглядеть как ABC ≅ DEF, что значит, что стороны обоих треугольников и их углы идеально друг с другом совпадают: стороны AB, BC и CA равны сторонам DE, EF и FD (соответственно), а углы по вершинам A, B и C равны углам по вершинам D, E и F (также соответственно). Именно это мы и имеем в виду, когда отмечаем одинаковым количеством черточек совпадающие стороны и углы этих двух по сути разных (хоть и равных) треугольников.
Остальное – дело техники. Если вы, например, имеете дело с двумя равносторонними треугольниками и знаете, что углы двух из трех пар равны (допустим, ∠A = ∠D и ∠B = ∠E), вы можете смело утверждать, что равными будут углы и третьей пары – а значит, треугольники являются конгруэнтными. Информации тут даже больше, чем нужно: нам вполне достаточно знать, что равными будут боковые стороны треугольников (AB = DE и AC = DF) и углы между ними (∠A = ∠D). А дальше все просто: BC = EF, ∠B = ∠E, а ∠C = ∠F. Из этого вытекает аксиома конгруэнтности треугольников по двум сторонам и лежащему между ними углу.
Это именно аксиома, а не теорема, поскольку доказать ее с помощью уже существующих аксиом невозможно. Зато, принятая на веру, она ложится в основу других не менее полезных теорем конгруэнтности а) по трем сторонам; б) по одной стороне и двум прилежащим к ней углам; и в) по двум углам и прилежащей к одному из них стороне. (Не существует только теоремы конгруэнтности по двум сторонам и прилежащему к одной из них углу: для стопроцентной уверенности угол все же должен находиться между сторонами.) Самой интересной из них мне кажется теорема а), ведь изначально в ней вообще никак не упоминаются углы, равенство которых доказывается через равенство сторон.
Но вернемся к аксиоме по двум сторонам и углу между ними и докажем с ее помощью одну замечательную теорему, касающуюся равнобедренных треугольников. Равнобедренным называется такой треугольник, две из трех сторон которого имеют одинаковую длину. (И кстати, уж коли об этом зашла речь – есть и другие виды треугольников: равносторонние – в которых все три стороны равны; прямоугольные – в которых один угол равен 90°; остроугольные – в которых все три угла меньше 90°; и, наконец, тупоугольные – в которых один угол больше 90°.)
Теорема о равнобедренном треугольнике: Если в равнобедренном треугольнике ABC стороны AB и AC равны, противолежащие этим сторонам углы будут также равны.
Доказательство: Из точки A проведем линию так, чтобы она делила ∠A ровно пополам и пересекала отрезок BC в точке X, как на рисунке. Это биссектриса угла A.
Получившиеся таким образом треугольники BAX и CAX являются конгруэнтными согласно аксиоме по двум сторонам и лежащему между ними углу: BA = CA (что следует из понятия равнобедренности), ∠BAX = ∠CAX (что следует из понятия биссектрисы), а AX = AX (вернее, не так: отрезок AX не уникален, он появляется одновременно в двух треугольниках и не меняет свою длину). А так как BAX ≅ CAX, также равны будут и остальные стороны и углы, в том числе ∠B = ∠C, что и требовалось доказать.◻
То же можно доказать и с помощью теоремы конгруэнтности по трем сторонам. Для этого возьмем точку M как середину отрезка BC, то есть чтобы BM было равно MC. Проведем линию по отрезку AM. Как и в предыдущем доказательстве, треугольники BAM и CAM будут конгруэнтными, потому что BA = CA (равнобедренность), AM = AM, а MB = MC (потому что точка M находится ровно посередине BC). Следовательно, согласно доказательству по трем парам сторон, BAM ≅ CAM, что говорит нам о равности лежащих в них углов, в том числе и ∠B = ∠C, что и требовалось доказать.
Из факта конгруэнтности следует, что ∠BAM = ∠CAM, следовательно, отрезок AM является биссектрисой. Более того, так как ∠BMA = ∠CMA и в сумме они дают 180°, каждый из них должен быть равен 90°, из чего следует вывод, что в равнобедренном треугольнике биссектриса, проложенная из угла A, будет перпендикуляром к основанию BC.
Кстати, доказательство от обратного в отношении равнобедренного треугольника тоже вполне эффективно, то есть если ∠B = ∠C, то AB = AC. Для этого, как и в самом первом доказательстве, проведем биссектрису из точки A в точку X. Утверждение, что BAX ≅ CAX, в этом случае следует из теоремы конгруэнтности по двум углам и прилежащей к одному из них стороне: ∠B = ∠C (согласно изначальному условию), ∠BAX = ∠CAX (согласно определению биссектрисы), а AX = AX. Значит, AB = AC, то есть треугольник ABC является равнобедренным.
Теорему эту можно применить и к равностороннему треугольнику: если равны все стороны, значит, равны и все углы. Следовательно, поскольку в сумме своей три угла дают 180°, имеем сопутствующую теорему.
Сопутствующая теорема: В равностороннем треугольнике каждый из углов равен 60°.
Согласно теореме конгруэнтности по трем сторонам, если в треугольниках ABC и DEF совпадают все стороны (то есть AB = DE, BC = EF, а CA = FD), их углы будут также совпадать (то есть ∠A = ∠D, ∠B = ∠E, а ∠C = ∠F). Верным ли будет обратное предположение, что, если в треугольниках ABC и DEF совпадают все углы, будут совпадать и их стороны? Конечно же, нет – просто посмотрите на рисунок:
Два треугольника с равными углами называются подобными. Если треугольники ABC и DEF являются подобными (что обозначается как ∆ABC ~ ∆DEF или просто ABC ~ DEF), то ∠A = ∠D, ∠B = ∠E, а ∠C = ∠F. То есть один из них, по сути, является уменьшенной (или увеличенной) версией второго. Поэтому при ABC ~ DEF их стороны находятся в пропорциональной зависимости друг от друга по некоторому положительному масштабирующему коэффициенту k: DE = kAB, EF = kBC, а FD = kCA.
Все это поможет нам ответить на второй вопрос нашей викторины, с которой мы начали главу. Давайте вспомним все условия. У нас есть две параллельные прямые: на нижней пролегает отрезок XY, на верхней – точка P. Нашей задачей было найти такое местоположение точки P, при котором треугольник XYP имел бы наименьший периметр. Преобразуем правильный ответ в теорему.
Теорема: треугольник XYP имеет наименьший периметр, если точка P, которая расположена на прямой, параллельной его основанию, находится точно в середине отрезка XY.
И хотя для того, чтобы подтвердить это предположение, достаточно пары нехитрых вычислительных операций, побалуем себя изысканным геометрическим подходом (доказательство получится очень долгим и немного запутанным, поэтому, если хотите, можете особо в него не вчитываться, а то и вовсе пропустить).
Доказательство: Предположим, что точка P располагается абсолютно в любом месте на верхней прямой, а точка Z располагается прямо над точкой Y. (Точнее говоря, точка Z должна быть расположена так, чтобы линия YZ, проведенная от нее в точку Y, была строго перпендикулярна как нижней, так и верхней прямым, как показано на рисунке чуть ниже.) Продолжим линию YZ до точки Y´так, чтобы отрезок Y´Z был равным отрезку