x2 – x1, а высота – y2 – y1. Следовательно, согласно теореме Пифагора, гипотенуза L равна
то есть что и требовалось доказать.
Чему будет равна диагональ в коробке размером a × b × c? Возьмем прямоугольник, образующий дно этой коробки, и обозначим пару противоположных его углов буквами O и P. Длина и ширина при этом будут равны соответственно a и b, а диагональ OP – √(a² + b²).
Теперь проложим линию c от точки P к точке Q, образующей угол, противолежащий O. Чтобы найти расстояние от O до Q, нам понадобятся длины катетов прямоугольного треугольника и c. Применим к ним теорему Пифагора и получим, что длина диагонали OQ равна
Ну а теперь собственно тождество – столь же полезное, сколь и красивое. Доказательство может показаться несколько запутанным, поэтому можете смело его пропускать (хотя я все же советую вам в нем разобраться – оно ляжет в основу доказательства других тождеств).
Теорема: Для любых углов A и B
Доказательство: На единичной окружности, центром которой является точка O, расположены точки P (cos A, sin A) и Q (cos B, sin B). Предположим, что длина отрезка PQ равна с. Что можно сказать о ней?
В треугольнике OPQ отрезки OP и OQ являются радиусами единичной окружности, а значит, их длина равна 1, а ∠POQ может быть измерен как A – B. Следовательно, согласно закону косинусов,
С другой стороны, формула расстояния приводит нас к уравнению
поэтому расстояние c от точки P = (cos A, sin A) до точки Q = (cos B, sin B) соответствует
где последнее представление основывается на уравнениях cos² B + sin² B = 1 и cos² A + sin² A = 1.
Соединив эти уравнения для c², получаем
Вычтем из обеих частей 2, разделим их на –2 и получим
что и требовалось доказать.◻
Формула для cos (A – B) основывается на законе косинусов и исходит из того, что 0° <A – B< 180°. Но ту же теорему можно доказать и выйдя за рамки подобных ограничений. Если переместить треугольник POQ по часовой стрелке на B градусов, мы получим конгруэнтный ему треугольник P'OQ', в котором Q' будет располагаться на оси x в координатах (1, 0).
Так как ∠P'OQ' = A – B, P' = (cos (A – B), sin (A – B)). Согласно формуле расстояния для P'Q' будет верно следующее:
c² = (cos (A – B) – 1)² + (sin (A – B) – 0)² = cos² (A – B) – 2 cos (A – B) + 1 + sin² (A – B) = 2 – 2 cos (A – B)
Из этого можно заключить, что c² = 2 – 2 cos (A – B), при этом нам не нужны ни теорема косинусов, ни предположение об угле A – B. Ну а дальнейшее доказательство можно скопировать с предыдущего.
Обратите внимание, что при A = 90° формула для cos (A – B) утверждает следующее:
Происходит это на том основании, что cos 90° = 0, а sin 90° = 1. Если в этом уравнении заменить B на 90° – B, получим
Мы уже доказали правдивость этих утверждений на примере B как острого угла. Однако алгебра позволяет нам пойти дальше и подтвердить их для любого значения B. Так, если заменить B на – B, мы придем к
так как cos (–B) = cos B, а sin (–B) = –sin B. Если предположить, что B = A, у нас получится формула функций двойного угла:
А так как cos² A = 1 – sin² A и sin² A = 1 – cos² A, мы также можем утверждать, что
Из этого тождества косинусов проистекает аналогичное тождество синусов, например,
B = A приводит нас к формуле функций двойного угла для синусов –
а замена B на – B – к
Давайте соберем в одну таблицу все тождества, которые мы успели вывести в этой главе:
Повторюсь: использовать буквы A и B вы не обязаны, сгодятся и любые другие (скажем, cos (2u) = cos²u – sin²u или sin (2θ) = 2 sin θ cos θ).
Радианы и графики в тригонометрии
До сих пор нам встречались углы, значения которых находились исключительно в диапазоне от 0 до 360 градусов. Но пристальный взгляд на единичную окружность невольно заставляет усомниться в обоснованности выбора числа 360. Сделан он был давным-давно, еще в древнем Вавилоне, где в обиходе была шестидесятеричная система счисления, использовавшаяся в том числе и в календаре (да-да, число 360 подозрительно напоминает количество дней в году). Альтернатива была предложена много позже, в XIX веке, когда в математике – а затем и в других науках – появилось понятие радиана, представляющего собой
или, другими словами,
Для тауистов, почитающих число t как 2π,
В числовом же выражении 1 радиан примерно равен 57°.
Но зачем они нужны, спросите вы. И чем вдруг научному сообществу так не угодили привычные всем градусы?
В круге с радиусом r угол в 2π радианов охватывает длину окружности 2πr. Если взять часть этого большого угла, величина дуги, отделяемой этой частью, будет в 2πr раз больше получившейся дроби. Если говорить конкретнее, то 1 радиан «захватывает» дугу длиной 2πr(1/2π) = r, а m радианов – дугу длиной mr. В единичной окружности значение угла в радианах равно длине соответствующей ему дуги. Разве не удобно?
А вот единичный круг, поделенный на самые «популярные» углы – значения выражены как в градусах, так и в радианах.
Для сравнения – версия с t вместо π.
На рисунках, кстати, очень хорошо заметно, насколько t удобнее π. Для угла 90° (занимающего четверть окружности) представление в радианах выглядит как t/4; для угла 120° (треть окружности) – как t/3; для угла 60° (одна шестая окружности) – как t/6; t же есть, по сути, один полный