n значение члена (1 + 1/n)n будет все ближе и ближе подходить к e. Теперь предположим, что h = 1/n. При очень большом значении n h = 1/n находится очень близко к 0. Следовательно, при h, близком к 0,
Возведя обе части в степень h (и помня, что (ab)c = abc), получаем
А есть ли еще такие функции, которые равны своим производным? Есть. Но все они сводятся к y = cex, где c заменяется любым действительным числом (в том числе и 0, который превращает функцию в постоянную y = 0).
Не так давно мы выяснили, что при сложении функций производная суммы равна сумме производных. А что насчет умножения? Увы, но производная произведения не равна произведению производных. Тем не менее посчитать ее не очень сложно – для этого достаточно воспользоваться несложной теоремой.
Теорема (правило дифференцирования произведения функций): Если y = f(x)g(x), то
Например, согласно правилу дифференцирования произведения, чтобы продифференцировать y = x3ex, нам нужно взять f(x) = x³ и g(x) = ex. В результате у нас получится
Обратите внимание, что при f(x) = x3 и g(x) = x5 их произведение, согласно тому же правилу, составит x3x5 = x8. Производная же будет выглядеть как
что полностью соответствует правилу дифференцирования степенной функции.
Доказательство (правило дифференцирования произведения функций): Предположим, что u(x) = f(x)g(x). Тогда
А дальше творим истинно математическое волшебство – добавляем к числителю 0, но не привычным способом, а с помощью прибавления и вычитания f(x + h)g(x):
Так как h → 0, в результате имеем f(x)g'(x) + f'(x)g(x), что и требовалось доказать.◻
Но доказанное правило полезно не только в этом конкретном случае – с его помощью можно найти производные других функций. Мы уже доказали, что правило дифференцирования степенной функции верно при положительных значениях показателя степени. Давайте посмотрим, как оно поведет себя при дробных и отрицательных значениях.
Например, согласно правилу дифференцирования степенной функции
Сможем ли мы доказать его с помощью правила дифференцирования произведения? Предположим u(x) = √x. Тогда
Продифференцировав обе стороны и применив правило дифференцирования произведения, получаем
Следовательно, как мы и предполагали.
Правило дифференцирования произведения при отрицательных значениях степени гласит, что y = x−n будет иметь производную Чтобы это доказать, возьмем u(x) = x−n, где n ≥ 1. Согласно определению, при x ≠ 0
Продифференцировав обе стороны и применив правило дифференцирования произведения, получаем
Разделив всех члены уравнения на xn и перенеся первый член в другую часть уравнения, получаем
что и требовалось доказать.◻
Следовательно, если y = 1/x = x–1, то y' = −1/x², если y = 1/x² = x–2, то y' = −2x–3 = −2/x³, и т. д.
Помните, в 7 главе мы искали такое положительное значение x, при котором функция
показала бы минимальное значение? Тогда мы нашли решение с помощью геометрии, показав, что результат может быть достигнут при x = 1. Но можно решить эту задачу значительно проще: это значит, что y' = 0, это дает нам 1 – 1/x² = 0, а единственная положительная величина, которая удовлетворяет этому условию, – x = 1.
Что касается тригонометрических функций, то их дифференцировать ничуть не сложнее. Обратите внимание, что для доказательства следующей теоремы нам нужно, чтобы углы были выражены в радианах.
Теорема: Если y = sin x, то y' = cos x, а если y = cos x, то y' = –sin x. Другими словами, производная синуса равна косинусу, а производная косинуса – синусу со знаком минус.
Доказательство: Для доказательства нам потребуется следующая лемма (лемма – это подсобная, подготовительная теорема, с помощью которой можно доказать более сложное и серьезное утверждение).
Лемма:
Здесь утверждается, что значение любого угла h, равного чуть больше, чем 0 (в радианах), будет близко к значению h, в то время как значение косинуса будет близко к 1. С помощью калькулятора, например, можно выяснить, что sin 0,0123 = 0,0122996…, а cos 0,0123 = 0,9999243…. С помощью этой леммы можно продифференцировать любой синус или косинус. Тождество sin (A + B) из главы 9 говорит нам, что
А так как h → 0, то, согласно нашей лемме, это уравнение превращается в (sin x)(0) + (cos x)(1) = cos x. Подобным же образом
И снова h → 0 дает нам (cos x)(0) – (sin x)(1) = –sin x, что и требовалось доказать.◻
То, что можно доказать с помощью такого вот графика:
На единичной окружности, часть которой изображена выше, R = (1, 0), а P = (cos h, sin h), где h есть небольшой угол с положительным значением. В прямоугольном треугольнике OQR
Рассмотрим сектор OPR, имеющий клинообразную форму. Площадь единичной окружности равна π1² = π, сектор OPS – ее часть, выражаемая дробью h/(2π). Следовательно, площадь сектора OPR составляет π(h/2π) = h/2.
Так как сектор OPR содержит в себе треугольник OPS, а тот, в свою очередь, – треугольник OQR, сравнение их площадей дает нам
Для положительных значений a, b и c, если a<b<c, то 1/c< 1/b< 1/a. Следовательно,
А так как h → 0, и cos h, и 1/cos h будут стремиться к 1, что и требовалось доказать.
◻
С помощью полученного результата и нескольких алгебраических формул (включая cos² h + sin² h = 1) можно доказать, что
◻
Производные синуса и косинуса – ключи к дифференцированию тангенса.
Теорема: Если y = tan x, то y' = 1/(cos²x) = sec²x.
Доказательство: Предположим, что u(x) = tan x = (sin x)/(cos x). Тогда
Продифференцировав обе части и применив правило дифференцирования произведения функций, получим
Разделим все члены на cos x и решим уравнение для tan' (x):
в котором предпоследнее значение получается в результате деления тождества cos 2