Для этого имеются специальные формулы. Они называются рядами Тейлора, потому что первым, кто ввел их в оборот, был английский математик Брук Тейлор (1685–1731). Для функции f(x) с производными f'(x), f''(x), f'''(x) и т. д. мы имеем
при любом значении x, «достаточно близком» к 0. Что значит «достаточно близком»? В некоторых функциях – например, ex, sin x или cos x – x может быть практически любой величиной. Но есть и такие функции (мы встретимся с ними чуть позже), которые имеют смысл только при очень маленьких значениях x.
Проследим, как меняется формула для f(x) = ex. Так как ex равна своей собственной первой (равно как и второй, и третьей и т. д.) производной, следовательно
то есть ряд Тейлора для ex превращается в 1 + x + x2/2! + x3/3! + x4/4! +…, как и предполагалось. При небольшом значении x нам достаточно посчитать лишь несколько членов ряда, чтобы получить точную аппроксимацию верного ответа.
Посчитаем с его помощью проценты. Как мы выяснили в прошлой главе, если положить на счет $1000 под 5 %, то, при условии непрерывных начислений, к концу года мы будем иметь $1000 e0,05 = $1051,27. И мы знаем, как это подсчитать. Но к тому же ответу можно прийти и с помощью формул сначала второго –
а потом и третьего порядка аппроксимации: $1051,27.
Аппроксимации Тейлора могут быть представлены в виде графика, на котором вместе с первыми тремя многочленами Тейлора изображена показательная (экспоненциальная) функция y = ex.
Постепенно увеличивая степень многочлена, мы достигаем все большей точности аппроксимации, особенно если x близок к 0. Но что же такого особенного в многочленах Тейлора, что делает их настолько эффективными? Аппроксимация первого порядка (называемая линейной) утверждает, что при x, близком к 0,
На графике получается прямая линия, проходящая через точку (0, f(0)) с наклоном f'(0). Значит, многочлен Тейлора степени n будет проходить через ту же точку (0, f(0)) и иметь такие же первую, вторую, третью и т. д., вплоть до n-ной, производные, что и начальная функция f(x).
Кстати, многочлены и ряды Тейлора отлично показывают себя при работе и с другими величинами (не только 0), к которым стремится х. Так, ряд Тейлора для f(x) с начальной точкой a равен
При a = 0 он будет равен f(x) для всех действительных или комплексных значений x, близких к a.
Возьмем ряд Тейлора для f(x) = sin x. Посмотрите: f'(x) = cos x, f''(x) = –sin x, f'''(x) = –cos x, а f''''(x) = sin x = f(x). При сопоставлении с 0, начав с f(0), мы придем к циклу 0, 1, 0, –1, 0, 1, 0, –1…., в котором каждое четное значение x попросту исчезает из ряда. Следовательно, получается, что при любом x, выраженном в радианах,
Аналогично, для f(x) = cos x имеем
Ну и напоследок давайте возьмем пример, в котором ряд Тейлора равен функции при некоторых – но не всех – значениях x. Пусть это будет Здесь f(0) = 1, и, согласно цепному правилу, первые несколько производных выглядят как
Следуя и дальше этой закономерности (или воспользовавшись методом индукции), мы неизбежно придем к заключению, что n-ная производная (1 – x)–1 будет равна n!(1 – x)−(n + 1) (а при x = 0 – просто n!). Следовательно, ряд Тейлора трансформируется в
что будет верно только при таком значении x, которое находится в диапазоне от –1 до 1. Если же x, например, будет больше 1, то складываемые величины будут становиться все больше и больше, пока сумму станет вовсе невозможно определить.
Странно, правда? Возможно, вам интересно узнать, каково это – складывать бесконечное количество чисел. А как будет выглядеть их сумма? Ответы на эти вопросы – в следующей главе, посвященной бесконечности, главе, в которой мы встретимся со многими странными, удивительными, непредсказуемыми и прекрасными тайнами математики.
Глава номер двенадцатьМагия бесконечности
Бесконечно интересно
Когда еще, как не в конце, под самый занавес, говорить о бесконечности? И когда еще, как не в конце, вспоминать начало? А в начале у нас была сумма всех чисел от 1 до 100:
А потом – и сумма чисел от 1 до n:
А еще были другие суммы чисел конечных диапазонов. В этой главе мы попытаемся сосчитать те числа, ряд которых имеет начало, но не имеет конца, например,
(надеюсь, мне удалось убедить вас, что в результате получится 2, причем не приблизительно, а ровно 2). Некоторые такие ряды дают очень интересные результаты сложения, например,
А другие – вовсе не имеют их, как, скажем,
В математике принято считать, что суммой всех положительных чисел является бесконечность, что записывается следующим образом:
то есть результат постоянно растет, не имея при этом верхнего предела. По сути, это означает, что ответ превосходит любое число, которое только может возникнуть у вас в голове – сотню, миллион, квадриллион… И все-таки в конце главы мы увидим, что вполне бывает, например, и такое:
Заинтригованы? Уверен, что да. Уже через несколько строк мы покинем привычный нам мир и отправимся в сумеречное царство бесконечности, где возможны самые странные вещи, – в царство, манящее всех математиков своей неизведанностью и красотой.
Является ли бесконечность числом? Не совсем, хотя с ним порой и обращаются, как с обычным числом: вы вполне можете натолкнуться на что-нибудь вроде
Теоретически никакого самого большого числа нет: вы всегда можете прибавить к нему единицу и получить еще большее число. Символ ∞ по существу обозначает величину «произвольно большую» или бо́льшую, чем любая другая положительная величина. Другой полюс бесконечности представлен −∞, величиной меньшей, чем любая другая отрицательная величина.
Кстати, количества, выражаемые как ∞ – ∞ (бесконечность минус бесконечность) или 1/0 являются неопределенными. Конечно, очень велико искушение заявить, что 1/0 = ∞, потому что при делении единицы на все меньшую и меньшую положительную величину частное будет расти. Но ведь если делить 1 на все меньшие и меньшие по абсолютной величине отрицательные числа, то частное будет представать все большим и большим по абсолютной величине отрицательным числом.
Важность бесконечной суммы: геометрические ряды
Начнем, пожалуй, с утверждения, принимаемого всеми математиками и кажущегося неправильным большинству непосвященных:
То, что две эти величины очень близки друг к другу, не вызывает сомнений практически ни у кого. Но считать их одним и тем же числом?.. Несколько чересчур, правда? Неправда. Позвольте мне попробовать убедить вас в обратном. Поверьте, доказательств у меня так много, что хотя бы одно из них обязательно покажется вам правдоподобным.
Самое, пожалуй, простое исходит из утверждения, что
Умножаем обе стороны на 3 и получаем
Другое доказательство основано на методе, который мы использовали в главе 6 для периодических десятичных дробей. Обозначим бесконечную последовательность знаков после запятой переменной w, вот так:
Умножим обе части на 10:
Вычтем первое уравнение из второго
и получим w = 1.
А вот доказательство, для которого алгебра вообще не нужна. Надеюсь, вы согласны с тем, что два числа могут считаться разными, если между ними расположено третье число, не равное ни первому, ни второму (например, их среднее арифметическое)? Пойдем от обратного: предположим, что 0,99999… и 1 суть разные величины. Какое же тогда число будет между ними? А если такого числа нет, значит, мы не можем утверждать, что они разные.
Два числа или две бесконечные суммы считаются равными в том случае, если они сколь угодно близки друг к другу, то есть разница между ними меньше любой положительной величины, будь то 0,1 или 0,0000001, или 1, деленное на триллион. Разница между 1 и 0,99999… – наглядный тому пример, и именно это дает математикам право утверждать, что 1 и 0,99999… суть одно и то же число.
Следуя той же логике, мы можем оценить бесконечную сумму следующего ряда:
А еще мы можем найти ей физическое соответствие. Представьте, что вы стоите в двух метрах от кирпичной стены. Вы делает