Гравитационное замедление времени (которое мы еще называем гравитационным красным смещением) обратно пропорционально функции хода, которая на горизонте обращается в ноль, а значит, время на нем замедляется бесконечно, – это и есть один из способов понять, почему Алиса и Боб никогда не увидят импульса, посланного им с горизонта, не говоря уж о тех, что посланы после этого. Можно сказать, что внутри горизонта замедление времени становится «больше бесконечного». Но что это утверждение вообще означает? Когда свободно падающий зонд минует горизонт, с ним не произойдет ничего необычного. Но если его двигатели включатся и он попытается двигаться с ускорением в обратном направлении, ничего не получится – независимо от мощности двигателей, он не сможет даже вновь вернуться на горизонт. Более того, он не сможет даже перестать двигаться внутрь. Это роковое свойство черных дыр мы уже отмечали в предисловии. Двигаться вперед во времени означает двигаться внутрь, к центру. Нет силы, способной вытащить объект из черной дыры, так же как нет силы, способной заставить что-либо двигаться назад во времени. Поэтому как только зонд пересек уровень горизонта, фотонам, испускаемым мигалкой зонда, не остается ничего, кроме как падать к центру дыры. И когда мы говорим, что замедление времени стало «больше бесконечного», мы понимаем под этим, что время внутри черной дыры совершенно не такое, как время снаружи: оно «идет внутрь», а будущее внутри черной дыры ограничено сингулярностью.
Центростремительный ход времени внутри горизонта – настолько важная в физике черных дыр идея, что для лучшего ее понимания мы вернемся к языку дифференциальной геометрии. Вспомним, что метрика пространства-времени играет двойную роль: она задает собственное время между времениподобными разделенными событиями и собственное расстояние между пространственноподобными разделенными событиями. И существует прекрасный способ объединить обе эти роли пространственно-временной метрики в одной формуле. Для этого мы напишем формулу не для расстояния, а для квадрата расстояния между двумя близкими событиями. Если квадрат расстояния положителен, значит, эти события разделены пространственноподобно, а если он отрицателен, то они разделены времени-подобно, и то, что мы принимали за квадрат расстояния, в действительности является отрицательным квадратом собственного времени между событиями. В решении Шварцшильда, как и в любом другом решении уравнений Эйнштейна, формула для метрики (основанная на функции хода, радиальном растяжении масштабов и т. д.) в действительности представляет собой одну из этих формул для квадрата расстояния, который может приобретать положительные или отрицательные значения. Для двух событий, немного разнесенных в радиальном направлении, квадрат расстояния между ними положителен над горизонтом, но отрицателен под ним. Последний пункт является ключевым: отрицательный квадрат расстояния означает, что события разделены времениподобно. Другими словами, радиус становится времениподобным, а время – пространственноподобным. Как ни странно все это звучит, ничего особенно необычного с кривизной геометрии Шварцшильда здесь не происходит; просто обычные понятия времени и расстояния при пересечении горизонта отчасти меняются местами.
Но несмотря на это их смешение, внутри горизонта наше исходное определение радиуса в решении Шварцшильда сохраняет свою силу: даже внутри черной дыры радиус все равно остается равным длине окружности с центром в начале отсчета, деленной на 2π. Это можно выразить и по-другому: площадь сферы при любом данном радиусе в решении Шварцшильда в 4π раза больше квадрата радиуса – формула, которую учат в школе. Но внутри черной дыры ее истинное значение становится даже немного пугающим: ведь радиус здесь, как мы только что узнали, является также и временем, и поэтому сфера, о которой мы говорим, представляет собой полную протяженность пространства в двух угловых направлениях в фиксированный момент времени. Когда время идет вперед (что означает движение радиуса внутрь), сфера становится всё меньше, меньше и меньше, а потом – бабах! – и вот она, сингулярность!
Чтобы объяснить наше «бабах!» при приближении к сингулярности, надо рассказать о приливных силах. Как хорошо понимал Ньютон, океанские приливы, которые происходят у нас на Земле, – это проявление гравитационного притяжения нашей планеты Луной[8]. Луна немного сильнее притягивает ту сторону земного шара, которая обращена к ней, чем противоположную. Это неравенство сил чуть-чуть вытягивает Землю в направлении Луны, что сказывается на форме всей Земли, но так как вода – субстанция текучая, то океаны реагируют на него заметнее, чем суша. В сумме приливные силы от Луны действуют так, как если бы они тянули к Луне ту сторону Земли, которая ближе к ней, при этом вытягивая противоположную сторону Земли в обратном направлении – от Луны. Это поначалу интуитивно кажется недоразумением: мы же знаем, что тяготение – это сила притяжения, а не отталкивания! Дело в том, что приливные силы – это результирующая, которая получается после учета усредненного гравитационного воздействия Луны на Землю. Это воздействие немного меняет орбитальное движение Земли, а приливные силы несколько растягивают ее.
Рис. 3.4. Падение зонда внутрь черной дыры: вид снаружи горизонта событий.
Рис. 3.5. Падение зонда внутрь черной дыры: вид снаружи горизонта событий.
Под горизонтом зонд вовлекается в пространственно-временной коллапс.
По мере того как «время» движется от r = rs на горизонте событий к r = 0 в сингулярности, зонд растягивается до бесконечности в одном пространственном направлении (“t”) и сжимается до нуля в двух пространственных сферических направлениях.
Когда наш зонд проваливается сквозь горизонт (рис. 3.4 и 3.5), он, в принципе, уже испытывает некоторое воздействие приливных сил, но незначительное, – ведь черная дыра такая огромная, а зонд довольно маленький, – ну, скажем, всего метр в поперечнике. Но внутри черной дыры эта ситуация быстро меняется. Как мы уже говорили, если уж зонд оказался под горизонтом, никакое ускорение не способно помочь ему избежать сингулярности. По сути, оказывается, что если мы хотим максимизировать собственное время жизни зонда прежде, чем он найдет свой безвременный конец, то лучшее, что мы можем сделать, – не заставлять его ускоряться вообще. Пусть он продолжает двигаться по геодезической. Тогда он войдет в сингулярность примерно через 27 секунд после пересечения горизонта. Приливные силы, вызванные гравитационным притяжением черной дыры, будут быстро расти по мере того, как зонд приближается к сингулярности, и к тому моменту, когда до входа в нее останется примерно от 10 до 100 микросекунд (точная цифра зависит от того, насколько прочен металл, из которого сделан зонд), его корпус разлетится на части. Растущая мощь приливных сил разнесет обломки зонда на еще более мелкие кусочки, а потом и эти кусочки распылятся на составляющие их атомы. Но и на этом дело не кончится – вскоре приливные силы вырастут настолько, что оторвут все электроны от атомных ядер, затем разорвут и сами ядра на протоны и нейтроны, а их – на кварки и глюоны. Действительно, «бабах»! Что будет дальше, неизвестно, потому что, насколько мы знаем, кварки, глюоны и электроны – точечные неделимые объекты. Но мы точно можем сказать, что два угловых направления в трехмерном пространстве сами сжимаются все сильнее и сильнее по мере приближения к сингулярности, а третье пространственное направление, соответствующее тому, что мы раньше, вне черной дыры, называли временем, испытывает еще более радикальное растяжение. В общем, всё, включая и наш зонд, сплющивается и растягивается в бесконечно тонкую линию.
Похоже, теперь мы исследовали решение Шварцшильда от начала до рокового конца. Поистине чудесным образом оно в простой и точной форме характеризует геометрию искривленного пространства-времени, в котором мы живем, и одновременно позволяет дать приближенное описание пространства-времени в окрестностях самого массивного объекта нашей Галактики, колоссальной черной дыры в ее центре. Сама по себе шварцшильдовская черная дыра абсолютно статична; она затаилась, как паук, в центре искривленной геометрической сети. Как мы теперь знаем, объекты, пролетающие слишком близко к ее горизонту, должны изо всех сил вырываться из пут ее притяжения, а всё, что пересекает ее горизонт (по крайней мере, мы так думаем!), очень скоро «переваривается» при помощи приливных сил, превращаясь в непредставимо тонкий поток вещества, устремляющийся в сингулярность.
Но это еще не конец рассказа о решении Шварцшильда. У шварцшильдовской метрики есть и другое воплощение, в пространственно-временном смысле диаметрально противоположное черной дыре, его называют белой дырой. В ней поток времени, начинающийся в сингулярности, отталкивает пространство прочь от нее, вынося всё наружу через границу, также пропускающую только в одном направлении, только вовне. И если что-то было выброшено из белой дыры, оно уже никогда не сможет вернуться обратно. Причину, по которой белая дыра должна быть частью решения Шварцшильда, можно усмотреть из следующего кажущегося парадокса. Геодезические, которые проходят мимо сингулярности, можно назвать замкнутыми: являясь оптимальными пространственно-временными расстояниями, они никогда и нигде не начинаются и не кончаются. Когда частица или фотон движутся по геодезической, для них из любой точки траектории всегда существует путь во времени вперед или назад. Это свойство может нарушаться в одном-единственном случае: если геодезическая входит в сингулярность. Чтобы понять, что произойдет в этом случае, требуется теория квантовой гравитации. Конечно, негравитационные силы могут заставить частицу двигаться по траектории, отличной от геодезической, но в качестве другого возможного пути в пространстве-времени геодезическая всегда проходит где-то поблизости. Например, если вы сидите в кресле в вашей любимой кофейне и читаете эту книгу, вы не находитесь на геодезической: вам не дает оказаться на ней давление, которое на вас оказывают кресло и земная поверхность. Но геодезическая в этом месте все равно существует – она идет сквозь поверхность Земли к ее центру, и какая-нибудь частица или объект, не подверженные этой силе давления, такие как нейтрино, могли бы по ней двигаться.