Маленькая книга о чёрных дырах — страница 8 из 32

Более рутинный пример принципа эквивалентности – это когда в лифте мы чувствуем себя тяжелее, если лифт с ускорением поднимается вверх, и легче, если он с ускорением опускается. Если лифт с ускорением поднимается в пустом пространстве в отсутствие каких-либо гравитирующих тел поблизости, то наши наблюдения внутри лифта идентичны тем, которые мы проводим, когда лифт остается покоящимся в гравитационном поле Земли. Точно так же, если лифт свободно падает в гравитационном поле Земли, мы испытываем такую же невесомость внутри него, какую мы бы испытывали, если бы свободно висели в пустом космическом пространстве.

Чтобы вернуться обратно к уравнениям Эйнштейна, наберемся храбрости и назовем скорость хода времени ее правильным математическим именем: функция хода. Другими словами, функция хода – это скорость, с которой время идет в любой заданной точке пространства. Правило вычисления функции хода в присутствии произвольно распределенных медленно движущихся масс дается дифференциальным уравнением, похожим на одно из уравнений Максвелла. Зная функцию хода, мы можем затем обратиться к принципу оптимального собственного времени для определения траектории массивного тела под воздействием гравитационного поля.

Дифференциальные уравнения для вычисления функции хода в присутствии медленно движущихся масс являются, вообще говоря, частным случаем одного из уравнений Эйнштейна. Существует еще девять функций, похожих на функцию хода, которые в совокупности полностью определяют форму искривленного пространства-времени, и для каждой из них можно составить эйнштейновское уравнение поля. То, что все эти десять функций совместно определяют, называется метрикой пространства-времени – это правило вычисления расстояния между соседними точками, а также скорости течения времени. Как только мы начинаем говорить о метриках, мы оказываемся на территории дифференциальной геометрии, которая изучает произвольно искривленные поверхности. В общей теории относительности используются и геометрии искривленных поверхностей высших порядков, в том числе искривленного пространства-времени.

Наше обсуждение «обычного» тяготения может создать у вас впечатление, что пространство остается идеально плоским, тогда как время в различных его точках идет с разной скоростью. Это не совсем так. В действительности, в областях, где время идет медленнее, пространство немного «раскрывается». Чтобы понять, что это значит, представьте себе, что Земля заключена в идеальную сферическую оболочку, площадь которой вы можете тщательно измерить. Далее, вы измеряете радиус этой сферы. (Возможно, для этого придется просверлить Землю до самого ее центра, но будем считать, что мы достигли соответствующего уровня техники и можем это сделать.) Естественно, вы обнаружите, что площадь A и радиус r сферы связаны формулой A = 4π. Однако так как внутри сферы находится Земля, r будет чуть больше относительно A, чем следовало бы из соотношения A = 4π. Другими словами, объем сферы, заключающей в себе Землю, немного больше объема пустой сферы с той же площадью поверхности. Как и гравитационное красное смещение, расширение пространства вблизи массивных тел проявляется очень слабо, если мы ограничиваем рассмотрение обычным слабым полем тяготения. Фактически оказывается, что наши пространственные измерения (удобным образом определенные) расширяются примерно на ту же величину, на которую замедляется ход времени. Может показаться, что все наши предыдущие рассуждения о падающих телах были неверными, мы ведь предполагали, что гравитационное красное смещение – это только эффект тяготения. Но дело спасает то, что наблюдатели, медленно движущиеся по отношению к гравитирующим телам, гораздо более чувствительны к замедлению времени, чем к расширению пространства. Мы же договорились иметь дело с «обычным тяготением», а в этом случае, в частности, требуется, чтобы никакое гравитирующее тело не имело плотности даже отдаленно сравнимой с той, которая достаточна для образования черной дыры. Чтобы понять, что произойдет, если мы откажемся от этого упрощающего предположения, нам придется глубже влезть в дебри дифференциальной геометрии. Дифференциальная геометрия (по крайней мере, та ее часть, которая нам нужна) стоит на трех китах: метриках, геодезических и кривизне. Все эти понятия можно проиллюстрировать, рассматривая любую искривленную поверхность, например поверхность Земли. Метрика – это просто, потому что тут всё дело в расстоянии; во всяком случае, поначалу кажется, что это просто. Например, мы знаем, что от Вашингтона до Сан-Франциско примерно 2440 миль. Под этим мы подразумеваем, что, если вы проделываете это путешествие по поверхности Земли (или чуть выше поверхности, если вы туда летите), то кратчайшее расстояние от Вашингтона до Сан-Франциско составит 2440 миль. Но если мы будем рассматривать эти города как две точки в пространстве, они окажутся чуть ближе, на расстоянии около 2400 миль. Это незначительное различие связано с тем, что если бы мы могли двигаться сквозь Землю по прямой, мы бы немного выиграли в расстоянии по сравнению с движением по сферической поверхности. Если перемещаешься по поверхности, твой путь неизбежно будет искривлен; чтобы найти полное расстояние, естественно разбить путь на небольшие отрезки, каждый из которых будет почти прямым, а потом сложить все длины этих отрезков. Термин «дифференциальный» относится как раз к этому процессу деления на кусочки и их измерению. Понятие метрики в дифференциальной геометрии и должно помочь нам определить длины кусочков. Если мы хотим вычислить общую длину пути, дифференциальная геометрия предлагает нам просто сложить все длины кусочков, а это упражнение в интегрировании.

Геодезическая на земной поверхности между Вашингтоном и Сан-Франциско – это кратчайший возможный путь для путешественника, передвигающегося по земле. Геодезическая – это не прямая, но она настолько же близка к прямой, насколько может быть к ней близка любая тропинка на поверхности Земли. Называя ее «прямой», мы хотим сказать, что, идя вдоль геодезической из Вашингтона в Сан-Франциско, мы будем идти прямо, никуда не сворачивая. Из-за кривизны Земли этот самый прямой из возможных путей пройдет немного севернее по широте, чем расположен каждый из двух городов. Еще более рельефный пример той же ситуации дают самолеты, летящие, например, из Афин в Сан-Франциско через Северный полюс. Оказывается, кратчайший путь между этими городами лежит над Гренландией, широта которой гораздо выше, чем широта любого из них. (Конечно, самолеты летят над Землей, а не по ее поверхности, но по сравнению с радиусом Земли высотой их полета вполне можно пренебречь, и для наших целей мы вполне можем представить себе, что самолеты летят практически по земной поверхности.)


Рис. 2.4. Конус не имеет внутренней кривизны – любой лист бумаги легко можно свернуть в кулек. Поэтому когда мы рисуем треугольник со сторонами, являющимися отрезками геодезических, сумма его углов будет равна 180°.

У того же треугольника, нарисованного на листе до его сворачивания в кулек, стороны представляют собой обычные отрезки прямых. А вот у сферы есть положительная внутренняя кривизна, и поэтому у треугольника, стороны которого образуются отрезками геодезических, сумма углов будет больше 180°.


Идея кривизны поначалу выглядит очень просто: мы все понимаем, как искривлена поверхность земного шара. Но в действительности в понятии кривизны, в той его форме, в какой оно чаще всего используется в дифференциальной геометрии (и которая необходима в теории относительности), есть один очень тонкий момент. Чтобы понять, в чем он состоит, рассмотрим различие между конусом и сферой. Обе эти поверхности искривлены, но по-разному. Плоский лист бумаги можно скрутить в конус без растяжения, а со сферой так не получится: если вы хотите покрыть сферу плоским листом бумаги, придется его смять или разорвать. Поэтому мы говорим, что сфера «внутренне искривлена», а конус «внутренне плоский» (если не считать его кромки и вершины). И сфера, и конус обладают «внешней кривизной», что попросту означает, что у них кривые поверхности в трехмерном пространстве. В теории относительности всё дело как раз в наличии внутренней кривизны. Чтобы сосредоточиться на этом параметре искривленных поверхностей, мы ограничимся такими вопросами, на которые можно получить ответ при помощи одних только измерений, производимых на поверхности. При таком подходе мы скажем, что расстояние от Вашингтона до Сан-Франциско равно 2440 миль, и не будем при этом задумываться о более коротком прямом пути между ними сквозь Землю.

Чтобы еще лучше понять геометрию внутренне искривленных поверхностей, надо задуматься о треугольниках, стороны которых образованы геодезическими. В плоской двумерной геометрии сумма углов при вершинах любого такого треугольника будет равна 180°. При наличии положительной внутренней кривизны, такой как кривизна земной поверхности, сумма углов будет больше 180°. Оказывается, есть такие искривленные поверхности (похожие по форме на шейку песочных часов), на которых треугольники, составленные из геодезических, будут иметь сумму углов меньше 180°. Это случай отрицательной внутренней кривизны.

Теперь, когда мы обрисовали главные идеи дифференциальной геометрии, посмотрим, как они обобщаются на четырехмерное пространство-время в общей теории относительности.

Используемая в ней метрика немного сложнее, чем метрика на поверхности Земли, так как задачи у этих метрик разные: вторая определяет расстояние между двумя пространственно разделенными событиями, а первая – время, протекшее между событиями, разделенными во времени. Временной интервал между разделенными во времени событиями в точности равен времени, протекшему для свободно падающего наблюдателя между моментами наблюдения одного и другого события в предположении, что оба события происходят в одной и той же точке в системе отсчета наблюдателя. Осмыслить пространственно разделенные события сложнее: по определению эти события разделены таким расстоянием, что наблюдатель, движущийся медленнее света, не может наблюдать их оба в одной и той же точке в своей системе отсчета. Для статического (то есть не изменяющегося со временем) пространства-времени можно определить расстояние между пространственно разделенными событиями через продолжительность распространения сигнала от одного из них до другого. Для общей теории относительности понятие метрики служит основополагающим: решения уравнений Эйнштейна не что иное, как метрика пространства-времени. Все наше обсуждение черных дыр в главах 3 и 4 будет строиться на особых метриках пространства-времени, известных как решения Шварцшильда и Керра.